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Abstract

The accretion history of dark matter halos

by

Camila Anahi Correa

Thesis supervisor: Professor J. Stuart B. Wyithe

The goal of this thesis is to (i) explore the physics that drives universal accretion history

of dark matter halos; (ii) determine the relation between the halos accretion history and

the halos internal structure; and (iii) disentangle the impact of halos accretion history

on galaxy evolution. To address these topics, we first use the extended Press-Schechter

(EPS) formalism to derive the halo mass accretion history (MAH) from the growth rate

of initial density perturbations. We show that the halo MAH can be well described by an

exponential function of redshift in the high-redshift regime. However, in the low-redshift

regime the mass history growth slows down because the growth of density perturbations is

halted in the dark energy dominated era due to the accelerated expansion of the Universe.

As a result, in the low-redshift regime the halo MAH can be described by a power-law

function of redshift.

We complement this study with the analysis of MAHs of dark matter halos using a

suite of cosmological simulations. We explore the relation between the density profile of

dark matter halos and their MAHs, and confirm that the formation time, defined as the

time when the virial mass of the main progenitor equals the mass enclosed within the

scale radius, correlates strongly with concentration. We combine both analysis, analytic

and numerical, to show that the halo MAH is the link between halo concentration and

the initial density perturbation field.

The connection found between the halo MAH and its density profile reached in these

studies was vital to derive a semi-analytic, physically motivated model for dark matter

halo concentration as a function of halo mass and redshift. Because the semi-analytic

model is based on EPS theory, it can be applied to wide ranges in mass, redshift and
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cosmology. The resulting concentration-mass (c − M) relations are found to agree with

the simulations, and because the model applies only to relaxed halos, they do not exhibit

the upturn at high masses or high redshifts found by some recent works. We predict

a change of slope in the z ∼ 0 c − M relation at a mass scale of 1011 M⊙. We find

that this is due to the change in the functional form of the halo MAH, which goes from

being dominated by an exponential (for high-mass halos) to a power-law (for low-mass

halos). During the latter phase, the core radius remains approximately constant, and the

concentration grows due to the drop of the background density.

We then connect the evolution of dark matter halos to the evolution of galaxies. We in-

vestigate the hot hydrostatic halo formation and its dependence on feedback mechanisms.

We find that in the presence of energy sources like stellar feedback, the hot halo mass,

Mhot, increases and the mass scale of hot halo formation is reduced. Active galactic nuclei

(AGN) do not affect the hot halo as strongly. We develop a semi-analytic approach that

makes use of both Mhot and the fraction of shock-heated gas, to calculate a ‘critical mass

scale’, Mcritical, for hot halo formation. We find that this mass scale, where the heating

rate produced by accretion shocks equals cooling, is the point in mass above which halos

develop a stable hot atmosphere. In the redshift range z = 0 − 4, Mcritical is 1011.7 M⊙,

but it then increases for increasing redshift, in very good agreement with our numerical

results.

Finally, we investigate the physics that drives the gas accretion rate onto galaxies at

the center of dark matter halos. We separately analyze the gas accretion rate onto the

interstellar medium (ISM) and onto the galaxy. We find that the accretion rate onto the

ISM remains roughly constant in halos larger than 1011.7 M⊙, whereas the accretion rate

onto the galaxy increases with increasing halo mass and flattens in the halo mass range

1011.7 − 1012.7 M⊙, and at redshifts z ≤ 2. The flattening is produced by the presence

of the hot halo atmosphere that acts as a preventive feedback mechanism. We derive a

physically motivated model of gas accretion onto galaxies that accurately reproduces the

gas accretion rates from simulations. The model depends on the rate of gas cooling from

the hot halo, on the fraction of shock-heated gas, and on the rate of cold gas accretion.

We show that the rate of gas cooling from the hot halo is driven by the cooling radius,

that it does not continuously decrease with increasing halo mass as generally thought.

Instead, it decreases in the halo mass range 1011.5 − 1013 M⊙, and then increases with

increasing halo mass, meaning that high-mass halos develop a hot halo cooling flow. We

find that the upturn in the cooling radius is due to the change in the gas density profile,

which is characterized by an evolving radial slope with halo mass.
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Preface

The work presented in this thesis is that of the author, however some of the work was

undertaken as part of a collaboration. All data used has been cited accordingly in the

text. Specific details are listed here:

• Chapter 1, which provides a brief description of the standard cosmological

framework, and introduces the physical processes that drive the formation and

evolution of dark matter halos and galaxies, is entirely the work of the author. All

references are cited in the text.

• Chapter 2, which derives an analytic model for halo mass accretion histories based

on the extended Press-Schechter formalism, is based on the analysis presented in

Correa et al. (2015a). The work was supervised by Stuart Wyithe, with input,

comments and suggestions from Joop Schaye and Alan Duffy.

• Chapter 3, which analyses the halo mass accretion histories and density profiles

from OWLS simulations, is presented in Correa et al. (2015b). The work was

supervised by Stuart Wyithe and Alan Duffy, with input, comments and sugges-

tions from Joop Schaye. This work utilizes data taken from a set of cosmological

hydrodynamical simulations compiled by Schaye et al. (2010) as part of the OWLS

project.

• Chapter 4, which analyses the halo mass accretion histories and concentration-mass

relations from OWLS simulations, is based on the analysis presented in Correa

et al. (2015c). The work was supervised by Stuart Wyithe and Alan Duffy, with

input, comments and suggestions from Joop Schaye. This work utilizes data taken

from a set of cosmological hydrodynamical simulations compiled by Schaye et al.

(2010) as part of the OWLS project.

• Chapter 5, which analyses the hot halo formation in the EAGLE simulations, is
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going to be presented in Correa et al. (2016, in prep.). The work was supervised

by Stuart Wyithe and Alan Duffy, with input, comments and suggestions from

Joop Schaye. This research utilizes data taken from a set of cosmological hydrody-

namical simulations compiled by Schaye et al. (2015) as part of the EAGLE project.

• Chapter 6, which analyses the gas accretion rates onto galaxies in the EAGLE

simulations, is going to be presented in Correa et al. (2016, in prep.). The

work was supervised by Stuart Wyithe and Alan Duffy, with input, comments

and suggestions from Joop Schaye. This work utilizes data taken from a set of

cosmological hydrodynamical simulations compiled by Schaye et al. (2015) as part

of the EAGLE project.

• Chapter 7, which summarizes the work presented in this thesis and discusses ideas

for future work, is entirely the work of the author.
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1
Introduction

This first chapter introduces the basics of cosmology and structure formation and highlights the

motivation of the research conducted in the thesis.

Galaxies are the ‘building blocks’ of the visible universe. The concept of galaxies can be

traced back to the 1700’s (Wright 1750; Kant 1755), but their extra-Galactic status was

confirmed by Hubble in 1929 (Hubble 1929). It was initially difficult to understand how

baryons alone could have collapsed and formed galaxies until 1937, when observations of

the velocity dispersion of the galaxies in clusters indicated that galaxies are embedded in

large structures of unseen matter (Zwicky 1937; Babcock 1939; Rubin et al. 1978), that are

much more extended than the galaxies themselves. These structures of dark matter are

called halos, which provide the gravitational potential wells necessary for the condensation

of baryons and formation of galaxies. In the following years, further evidence of dark

matter came from measurements of optical and radio emissions in spiral galaxies (Rogstad

& Shostak 1972; Rubin et al. 1980; Sofue & Rubin 2001) greatly strengthening the study of

dark matter and dark matter halos. Further compelling evidence was found in the radial

distribution of dark matter in galactic halos (e.g. Navarro et al. 1996), the observed large

scale structure of the Universe (Percival et al. 2001; Eisenstein et al. 2005; Tegmark et al.

2006; Percival et al. 2010) and the anisotropies of the Cosmic Microwave Background

radiation (CMB, Komatsu et al. 2011; Hinshaw et al. 2013; Sievers et al. 2013; Planck

Collaboration et al. 2014).

Our understanding of the distribution, formation and evolution of dark matter halos

in the Universe has progressed significantly in the last decade, through both analysis

of large cosmological simulations (e.g. Wechsler et al. 2002; McBride et al. 2009; Genel

et al. 2010; Fakhouri et al. 2010; Behroozi et al. 2013; van den Bosch et al. 2014) and
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analytical studies (e.g. van den Bosch 2002a; Neistein et al. 2006; Correa et al. 2015a).

However, a comprehensive understanding of dark matter halo formation and evolution

in a cosmological context is still missing. It has been known that the mass accretion

history of a halo consists of two distinct phases: an early fast phase and a later slow

phase (Wechsler et al. 2002; Zhao et al. 2003; Li et al. 2007; Zhao et al. 2009), but it is

still not entirely clear what drives the change of phase, or even how cosmology and the

mass power spectrum impact on the overall mass growth of halos.

The accretion history of a dark matter halo directly impacts on the halo internal

structure and on the evolution of the galaxies that reside in it. For instance, it has been

suggested that the change of phase in the mass accretion history drives the change in

the slope of the dark matter halo density profile, ρ(r), varying from ρ(r) ∝ r−1 at small

radii (set during rapid accretion) to ρ(r) ∝ r−3 at large radii (set during slow accretion,

Zhao et al. 2003; Lu et al. 2006; Ludlow et al. 2013). However, other explanations have

also been proposed to explain the universality of the halo density profile, such as mergers

events (e.g., Syer & White 1996; Dekel et al. 2003), dynamical friction (e.g., Nusser &

Sheth 1999), angular momentum (e.g., Williams et al. 2004) and adiabatic invariants

(e.g., Avila-Reese et al. 1998; Dalal et al. 2010), but so far no general consensus has been

reached.

Another fundamental problem is the efficiency of galaxy formation and its dependence

on the host halo accretion history. Although initially the accretion of gas will follow that

of dark matter, the presence of additional physical processes modify the manner in which

galaxies grow. It has been suggested that the thermal properties of the gas accreted

onto halos is responsible for the observed galaxy bimodality (namely star-forming versus

quenched, Dekel & Birnboim 2006). But the interaction of gas inflow with star formation

(e.g. Oppenheimer et al. 2010; Gabor & Bournaud 2014; Sánchez Almeida et al. 2014)

and the process of quenching (e.g. Birnboim et al. 2007; Gabor & Davé 2012; Feldmann

& Mayer 2015), is still a topic of open debate.

In view of this, the goal of this thesis is to explore the physical origin for the change of

phase in the halo mass accretion history and its dependence on cosmology, to build the

link between halo accretion history and density profile, and to disentangle the impact of

dark matter halo mass growth on galaxy evolution. These topics constitute the scope of

this work.

In this chapter we introduce the physical processes that drive the growth and evolution

of dark matter halos and galaxy formation as follows:

• Cosmology. In §1.1 we provide a brief description of the standard cosmological

framework, which forms the current basis to develop theories of structure formation.

• Dark matter halos. In §1.2 we explore how the density perturbations seeded by

inflation have given rise to collapsed dark matter halos. We introduce the Press-
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Schechter formalism in §1.2.1 and cosmological simulations in §1.2.2. We describe

dark matter halo internal structure in §1.2.3.

• Galaxy formation. In §1.3 we explore the current theories of galaxy formation, that

are developed within the cold dark matter framework and based on the hierarchical

growth paradigm.

Finally, we highlight the motivation of the research conducted in the thesis and present

a brief outline in §1.4.

1.1 Background cosmology

Cosmology is the study of the Universe, its origin and evolution. If we think about the

Universe, we think about galaxies and quasars, stars and supernova explosions, unseen

matter, and an infinite variety of fascinating systems that drive its enormous complexity.

In spite of this, cosmologists like to think of the Universe as being rather simple, that

follows simple laws and is only characterized by two forms of energy: matter (dark and

baryonic matter) and dark energy. This is known as the Λ cold dark matter (ΛCDM)

cosmological model (Blumenthal et al. 1984).

In 1915 Albert Einstein, as an attempt to analytically solve his equations of general

relativity, considered the most simple possible universe. One that is homogeneous and

isotropic on sufficiently large scales (beyond those traced by the large-scale structure of

the distribution of galaxies). Homogeneity is the property of being identical everywhere

in space at a fixed time, while isotropy is the property of looking the same in every

direction. The Universe is clearly not exactly homogeneous, but is defined this way in

an average sense over large enough scales. The combination of these two simplifying

assumptions is known as the cosmological principle. Soon after applying this principle,

Einstein found that all the solutions of his field equations required the Universe to be

either expanding or contracting, in contrast to his belief at that time that the Universe

was static. To obtain the static solution, he introduced a cosmological constant into his

equations that opposed the gravitational attraction. However, a few years later, Einstein

considered his introduction of a cosmological constant as ‘the biggest blunder of my life’

(quoted in Gamow 1970, see also Carroll et al. 1992), when Hubble demonstrated that

the Universe is expanding, by showing that the recession velocities of galaxies are linearly

related to their distances (Hubble 1929; Hubble & Humason 1931).

Hubble’s discovery soon revolutionized the field of cosmology, because it implied that

at the beginning the Universe should have been in an infinite-density state, the so-called

Big Bang. Such hot and dense Universe is nowadays detected in the form of a cosmic

microwave background radiation (CMB, discovered by Penzias & Wilson 1965, see also

Komatsu et al. 2009; Dunkley et al. 2009). However, before the CMB radiation was re-
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leased, the Universe underwent an extremely rapid expansion known as inflation (Guth

& Pi 1982)i. After inflation, the Universe cooled enough for quarks to be able to con-

dense under strong interactions and form the first primordial nucleons. Eventually, these

protons and neutrons fused through the process of primordial nucleosynthesis and pro-

duced an ionised plasma of hydrogen and helium nuclei, electrons and photons. During

this period, radiation was the dominant form of energy in the Universe. Photons and

ordinary particles were tightly coupled together, forming a single fluid of matter and ra-

diation. As the Universe expanded and cooled further, the plasma cooled sufficiently for

hydrogen and helium nuclei to capture electrons and combine to form atomic hydrogen

and helium, this period is known as recombinationii. Shortly after the number density of

free electrons decreased, the decoupling of matter and radiation occurs. Recombination

then led to the decoupling of photons and baryons, and the free-streaming photons, which

were last scattered 380,000 years after the Big Bang, are observed today as the CMB.

Since Hubble’s discovery we know that galaxies are receding from us with a velocity

dr/dt proportional to their distance r

dr

dt
= H0r. (1.1)

The factor of proportionality, H0, is called the Hubble constant. Its inverse, H−1
0 , gives

the characteristic time for significant changes in r, therefore H0 is generally called the

expansion rate of the local universe. The usual convention of writing the Hubble constant

at the present day is H0 = 100h km s−1 Mpc−1, where h is a dimensionless parameter

widely used in the literature, that has a currently accepted value of h = 0.67 (Planck

Collaboration 2015)iii. To measure H0 we need galactic distances and the apparent

velocity of recession of relatively nearby galaxies. The latter are easily measured from

the redshift, z, of the galactic spectral lines z ≡ λ0

λ1
−1, where λ1 is the photon wavelength

that would be measured by an observer in the rest frame of the emitting galaxy and λ0

is the wavelength measured by us.

With H0 and Newton’s constant, it is possible to form a quantity with the dimensions

of mass (or energy) per unit volume called the critical density

iGuth’s phrase ‘an extraordinarily rapid expansion’ is correct as stated, but it obscures the fact that the
rate of expansion would have been even greater were it not for the vacuum energy. Inflation should be
more commonly described as a period of extraordinarily slow expansion. For a detailed analysis see the
additional cosmology topics from John Peacock (http://www.roe.ac.uk/~jap/book/infmatch.pdf)
that will be included in the second edition of the textbook Cosmological Physics.

iiNote that ‘recombination’ is an unfortunate term, as this is the first time in the history of the Universe
that the electrons combine with protons to form atoms.

iiiPlanck is the third-generation space mission, following COBE (Smoot et al. 1992) and WMAP (Bennett
et al. 2003), dedicated to measurements of the CMB anisotropies. The 68% confidence limits for the
cosmological parameters introduced in this chapter correspond to the second data release from Planck,
calculated for the base ΛCDM model from Planck CMB power spectra, in combination with lensing
reconstruction and external data (baryonic acoustic oscillation measurements and the joint light-curve
analysis sample, constructed from supernovae data).

http://www.roe.ac.uk/~jap/book/infmatch.pdf
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ρcrit,0 =
3H2

0

8πG
= 1.878 × 10−29h2 gr cm−3, (1.2)

that represents the energy density of the Universe at the present time needed for flatness.

In eq. (1.2) and throughout this thesis, the subscript ‘0’ denotes value as of today. It is

generally convenient to express the main components, i (dark energy, baryons and dark

matter and relativistic particles), of the universe is terms of the critical density as

Ωi =
ρi

ρcrit
, (1.3)

with Ωi defined as a density parameter. The latest works of observational cosmology (e.g.

Riess et al. 1998; Spergel et al. 2007; Dunkley et al. 2009; Komatsu et al. 2009; Percival

et al. 2010; Larson et al. 2011; Hinshaw et al. 2013; Planck Collaboration et al. 2014) have

constrained the matter content, geometry and late-time evolution of the Universe. They

have found that baryons account for the 15.73% of the total matter content in the universe,

that has a density parameter of Ωm,0 = 0.308 ± 0.012 (Planck Collaboration 2015). Here,

the general inference is that the majority of the matter in the Universe (84.27%) must be

in some non-baryonic form, that is only detected through its gravitational force (hence the

name ‘dark’). One of the most challenging tasks for modern cosmology is to determine the

nature and origin of the dark matter. Candidates include the so called weakly interacting

massive particles (WIMPs). Dozens of dedicated laboratory experiments are conducted

to detect WIMPs (e.g. Angloher et al. 2012; Bernabei et al. 2013; Aalseth et al. 2013;

CDMS Collaboration et al. 2013), along with studies of WIMPs in the galactic halo by

testing their interaction with nucleons (e.g. Saab 2013), cosmic ray experiments (e.g.

Aramaki et al. 2015), and γ-ray/X-ray observations that search for WIMPs annihilation

signal (e.g. Lavalle & Salati 2012; Bergstrom 2012).

The total density of non-relativistic matter can then be written as the sum of densities

of dark matter (DM), baryons (b), and non-relativistic neutrinos (ν), therefore Ωm =

ΩDM + Ωb + Ων , where Ωb,0h2 = 0.0223 ± 0.0001 and ΩDM,0h2 = 0.1188 ± 0.0010 (Planck

Collaboration 2015). In the case of the relativistic particles, its total density can be

written as ρr = ργ +ρν +ρer, where ργ is the photon energy density (ργ = 4σSBT 4
γ /c3 with

σSB the Stefan-Boltzmann constant, c the speed of light) that appears to be dominated

by the CMB which is, to high accuracy, a blackbody at temperature Tγ = 2.73 K. ρν is

the relativistic neutrino energy density and ρer is the energy density of ‘extra radiation

species’. The nature of the extra radiation species is still unknown, but it is customary to

parameterize the number of extra radiation species as if they were neutrinos as ρν +ρer =
7π2

120 NeffT 4
ν , where in the standard model of particle physics Neff = 3.046 (Mangano et al.

2002, also constrained by Dunkley et al. 2011 and Keisler et al. 2011), and in the standard

thermal history of the universe, Tν = (4/11)1/3Tγ (e.g. Weinberg 1972). As a result, the
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total energy density in the relativistic component is Ωr,0 =
ρr,0

ρcrit,0
=

ργ ,0
ρcrit,0

(1+0.2271Neff) ≈
4.2 × 10−5h−2.

Besides dark matter, another fundamental question of modern cosmology concerns the

origin and nature of the second form of energy in the Universe called dark energy, also

known as apparent ‘vaccum energy’ or ‘cosmological constant’ Λ. The dark energy has a

density parameter of ΩΛ = 0.6911 ± 0.0062 (Planck Collaboration 2015). Dark energy is

energy that is not associated with particles and is therefore not diluted by the expansion

of the universe. An important evidence for this dominant component is provided by

the observed redshift-distance relation of high-redshift Type Ia supernovae (Kowalski &

et al. 2008), that implies that the expansion of the Universe is speeding up at the present

time.

1.1.1 Evolution of the Universe

To understand the evolution of the Universe since the Big Bang, it is useful to param-

eterize its expansion with a function called scale factor, a(t), that is proportional to

intergalactic distances and is defined to be unity at present (a(t0) = 1, with t0 = H−1
0

the age of the Universe). If we neglect peculiar velocities, the distance between us and

the galaxy i, ri, can be written as

ri = a(t)xi, (1.4)

where the constant of proportionality, xi, is time independent and called the comoving

coordinate of the galaxy. We next replace eq. (1.4) into eq. (1.1) and obtain

H(t) =
ȧ(t)

a(t)
. (1.5)

Here, and throughout this thesis, the over dot denotes the derivate with respect to time.

By definition, the Hubble parameter of the present time (eq. 1.5) is the Hubble con-

stant.

The evolution of the Universe can be studied by solving the Einstein field equations,

from which we learn that the geometry of space-time is determined by the matter/energy

content of the Universe. A detailed solution of the Einstein field equations, as well of

general relativity (GR), is beyond the scope of this thesis. For a detailed description of

the subject the reader is refereed to the books of Schutz (2009) and Hobson et al. (2006),

where he/she will find that for an homogeneous and isotropic universe. The solution of

the field equations is

[

ȧ(t)

a(t)

]2

=
8πG

3
ρ(t) +

Λc2

3
− Kc2

a2(t)
, (1.6)
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where ρ is the matter density of the Universe, Λ is the cosmological constant, and K

is the curvature of the Universe, which can either be positive (a ‘closed’ universe), zero

(‘flat’, Euclidean space) or negative (an ‘open’ universe).

To understand eq. (1.6) it is important to briefly investigate the evolution of the energy

content of the Universe. Let us then consider a uniform, perfect gas contained in a

comoving volume V ∝ a3(t) which expands with the Universe. Since the Universe is

homogeneous and isotropic, there should not be any net heat flow across the boundaries of

V . This implies that we can consider V as an adiabatic system, and since V can be chosen

arbitrarily small, no GR is required to describe its thermodynamic properties. Then for

our adiabatically expanding volume V the first law of thermodynamics, dU + PdV = 0,

can be written as

V dρ + (P/c2 + ρ)dV = 0, (1.7)

where P is pressure and, in order to consider both relativistic and non-relativistic fluids,

we wrote the internal energy, U , in terms of the energy density ρc2. Using that V ∝ a3(t),

and differentiating with respect to a we obtain

dρ

da
= −3(P/c2 + ρ)

a
, (1.8)

ρ ∝ a−3(1+ω). (1.9)

To solve eq. (1.8) we introduced an arbitrary equation of state P = ωρc2. A non-

relativistic gas is well approximated by a fluid of zero pressure (ω = 0), often referred to

as a dust fluid. Therefore for dust fluids eq. (1.9) gives ρ ∝ a−3. At early times, when the

Universe is dominated by radiation, we can approximate the fluid as an ultra-relativistic

radiation fluid for which ω = 1/3, that implies ρ ∝ a−4. If the Universe is vacuum energy

dominated, for which ω = −1, we obtain ρ ∝ constant = Λc2

8πG .

We next replace ρ(t) in eq. (1.6) by ρ = ρr + ρm = ρr,0a−4 + ρm,0a−3, to distinguish a

non-relativistic matter component from a radiation component. We also replace Λc2

8πG by

ρΛ,0, which corresponds to the vacuum energy component, and obtain

[

ȧ(t)

a(t)

]2

= H(t)2 =
8πG

3
[ρr,0a−4(t) + ρm,0a−3(t) + ρΛ,0] − Kc2

a2(t)
. (1.10)

Eq. (1.10) is known as the the Friedmann equation (Friedmann 1922), and the cos-

mology that it describes is called Friedmann-Robertson-Walker (FRW) cosmology. If we

solve eq. (1.10) for K = 0 (flat universe) and z = 0 (present time) we obtain eq. (1.2),

the energy density at present time needed for flatness.

It is possible to gain intuition about the evolution of the universe from the Frierdmann
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equation, by analyzing the right-hand side of eq. (1.10). If Λ ≥ 0 and K = 0 or K = −1,

the right-hand side is always larger than zero and a(t) always increases with t (the

Universe expands). If K = +1 and Λ ≥ 0, the right-hand side becomes zero as the scale

factor increases until the curvature term, K/a2, is as large as the sum of the matter and

radiation terms. Thereafter a(t) decreases with t, and the Universe contracts until a = 0.

Finally, if Λ < 0 (although not physically possible), the expansion will eventually halt

and be followed by recollapse.

The Friedmann equation can be written in terms of the density parameter, Ωi. There-

fore by substituting eq. (1.3) into eq. (1.10) we obtain

H(t)2 =
8πG

3
ρcrit,0[Ωr,0a−4(t) + Ωm,0a−3(t) + ΩΛ,0] − Kc2

a2(t)
, (1.11)

H(t)2 = H2
0 [Ωr(t) + Ωm(t) + ΩΛ(t)] − Kc2

a2(t)
, (1.12)

H(t)2 = H2
0 [Ωr(t) + Ωm(t) + ΩK(t) + ΩΛ(t)], (1.13)

where in eq. (1.12) we replaced ρcrit,0 by the expression (1.2) and defined Ωi(t) as Ωi =

Ωi,0a−3(1+ωi). In eq. (1.13) we defined ΩK(t) = −(Kc2/H2
0 )a2(t).iv Note that if we

evaluate Friedmann equation at t = t0, we find ΩK,0 = 1−ΩT,0 = 1−(Ωr,0 +Ωm,0 +ΩΛ,0),

where ΩT,0 is the total density parameter at the present time. Also note that ΩΛ(t) =

ΩΛ,0, since it does not have a time dependence. We then find that the curvature of

space-time, K, depends on the matter density of the Universe. Therefore if ΩT,0 < 1 the

Universe is open, if ΩT,0 = 1 the Universe is flat and if ΩT,0 > 1 the Universe is closed.

We can now understand the terminology ‘open’ and ‘closed’. Open (and flat) universes

expand forever, while closed universes recollapse in the future.

Throughout this thesis we will analyze how the evolution of the Universe impacts

on structure formation. Rather than using time as the temporal variable, we will use

redshift, z, a much more common variable in astronomy. In the previous section, we

defined redshift as a function of galactic spectral lines. We now need to keep in mind

that because the Universe is expanding, light waves propagating are stretched. Thus,

photons with a wavelength λ1 emitted by a galaxy at an earlier time will be observed by

us with a wavelength λobs = λ1/a(t). Since a(t) < a(t0) = 1 in an expanding universe,

λobs > λ and so the wavelength of the photons is redshifted. The redshift between time

of the light emission and now (t0) is z ≡ λobs

λ1
− 1 = 1

a(t) − 1. Therefore the relation

between a(t) and z is

a(t) =
1

1 + z
. (1.14)

ivSince ΩK is a unitless parameter K has to be taken to have units of length−2.
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Using the above relation, the Friedmann equation as a function of redshift is

H(z)2 = H2
0 [Ωr,0(1 + z)4 + Ωm,0(1 + z)3 + ΩK,0(1 + z)2 + ΩΛ,0]. (1.15)

We now analyze eq. (1.15) in more detail. We can see that the Universe passes through a

succession of epochs. At very high redshift the Ωr(t) term dominates, therefore eq. (1.15)

is H(z)2 ∼ H2
0 Ωr,0(1 + z)4, from what we find that a(t) ∝ t1/2. This is refereed as

the radiation-dominated epoch, that ends when z ∼ zeq, with zeq = 3371 ± 23 (Planck

Collaboration 2015) the point in time when the matter and radiation content of the

universe is equal. As z decreases the radiation epoch is followed by a matter-dominated

epoch, with H(z)2 ∼ H2
0 Ωm,0(1 + z)3 and a(t) ∝ t2/3. If there is no dark energy, what

follows would only depend on ΩK(t). For ΩT,0 > 1 (and ΩΛ,0 ∼ 0) the expansion reaches

a maximum and is followed by a contraction. In the case ΩT,0 < 1, the matter epoch

is followed by a curvature epoch with a(t) ∝ t. Finally, for ΩΛ,0 > 1, the matter epoch

is followed by a dark energy-dominated epoch which is characterized by an exponential

expansion, with a(t) ∝ exp(H0Ω
1/2
Λ,0t).

1.2 Structure formation

The background cosmology discussed in the previous section describes the dynamical

evolution of the Universe, but does not explain the formation of dark matter halos and

galaxies. The central mechanism responsible for structure formation in the Universe

is gravitational instability, caused by an inhomogeneous distribution of matter. In the

currently accepted cosmological paradigm, structures are initially in the form of density

perturbations, that were seeded by the amplification of quantum fluctuations during

inflation. To understand the initial distribution of the density perturbations, also known

as primordial density field, we have to analyze the CMB, which describes the statistical

distribution of matter in the early Universe. Fig. 1.1 shows the anisotropies of the CMB

as observed by Planck. The distinctive pattern of the angular temperature fluctuations

gives a direct snapshot of the distribution of radiation and energy at the moment of

decoupling. Because the CMB photons were tightly coupled with the mass density field

before decoupling, the temperature fluctuations are expected to be closely related to the

primordial density field at the time of decoupling. In addition, the tiny variation across

the sky, less than 0.01% on average, indicates that at the time of hydrogen recombination

the Universe was extremely uniform.

From the CMB we learn about the seeds of the small density fluctuations following

inflation. To describe the gravitational growth of perturbations in the matter dominated

era, we first consider small perturbations in the density field, ρ(x, t), with amplitude δ

and |δ| ≪ 1. Here δ is defined as a relative density perturbation or overdensity,
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Figure 1.1: Snapshot of the oldest light in our Universe, imprinted on the sky when the Universe
was just 380,000 years old. The figure shows tiny temperature fluctuations that
correspond to regions of slightly different densities, representing the seeds of all
future structure: the stars and galaxies of today. The expansion of the Universe
has stretched out the CMB radiation by around 1000 times, which makes it look
much cooler. So instead of seeing the afterglow at 3000 degrees, we see it at 2.73 K.
Copyright: ESA, Planck Collaboration.

δ(x, t) =
ρ(x, t)

ρ̄
− 1, (1.16)

with ρ̄ is the mean density at position x and time t. It is important to note that x is a

comoving coordinate that expands with the background Universe, and corresponds to a

proper coordinate r as x ≡ r(t)/a(t), with a(t) the scale factorv.

We next describe the evolution of the Universe in terms of an ideal pressure-less fluid

at fixed x with overdensity δ. The time evolution of the fluid is given by the continu-

ity equation (which describes mass conservation), the Euler equations (the equations of

motion) and the Poisson equation (describing the gravitational field) as

∂δ

∂t
+

1

a
∇ · [(1 + δ)v] = 0, (1.17)

∂v

∂t
+

ȧ

a
v +

1

a
(v ·∇)v = −a−1∇Φ, (1.18)

∇2Φ = 4πGρ̄a2δ, (1.19)

vThe geometric meanings of a(t) can be better understood if we consider and expanding or contracting
sphere whose radius is R(t) = a(t)R0 at time t. The scale factor relates the radius of the sphere at
time t to its comoving radius, R0, whose value does not change as the sphere expands or contracts
(thus the comoving radius is just the true radius measured in units of the scale factor).
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where v ≡ aẋ and ∇ = ∇x. To work with these equations, we first differentiate eq. (1.17)

once with respect to t and eq. (1.18) once with respect to x. We combine them and

neglect the nonlinear terms by assuming that both δ and v are small to obtain

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
= 4πGρ̄δ. (1.20)

In the above equation, the second term on the left-hand side is the Hubble drag term,

which tends to suppress perturbation growth due to the expansion of the Universe, and

the term on the right-hand side is the gravitational term, which causes perturbations

to grow via gravitational instability. Since this is a second-order differential equation,

we can find two possible solutions (or modes), a growing and a decaying mode. The

growing mode, δ+, is directly proportional to the growth factor that for a flat universe

with cosmological constant results

D(z) = D0H(z)

∫ ∞

z

1 + z′

H(z′)3
dz′, (1.21)

with D0 = D(z = 0) = 1. As long as the inhomogenities are small (in the so-called

linear regime) the density perturbation maintains its shape in comoving coordinates and

grows in amplitude in proportion to D(z). In the radiation-dominated regime (z > 103),

δ(t) ∝ a2(t). In the matter-dominated regime (1 < z < 103), the growth factor is

simply proportional to the scale factor a(t). At low redshift (z < 1), in the dark energy-

dominated regime, the density fluctuations freeze in amplitude (D(z) → D0) as their

growth is suppressed by the accelerated expansion of the Universe. If we consider the

difference in amplitude of the baryonic perturbations in the CMB, δ ∼ 10−5 at the epoch

of decoupling (adec ∼ 10−3), and those today δ ∼ 1. We find that there is not enough

time for the fluctuations to grow and form the structures we see today. Hence dark

matter is necessary in galaxy formation, since it provides the gravitational potential for

the baryons to collapse, that is not coupled to the photons.

Inflation generates a spectrum of perturbations in different k-modes, where each defines

the typical value of δ on the spatial scale λ = 2π/k. Mathematically, we write δk =
∫

d3xδ(x)e−ik ·x, where δ(x) is the real-space density field. The statistical properties

of the fluctuations are determined by the variance of the different k-modes given by

the linear power spectrum, P (k) = (2π)−3〈|δk|2〉, where the angular brackets denote

an average over the entire statistical ensemble of modes. The power spectrum is very

important because it describes how much power exists at each mode k with respect to

the background density. The larger the power for a given k, the more fluctuations in

regions of corresponding spatial scale λ.

In the standard cosmological model, inflation produces a primordial power-law spec-

trum P (k) ∝ kns, where ns, known as the spectral index, is ns = 0.9667±0.0040 (Planck
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Collaboration 2015). However, the little growth of the perturbations when the Universe

is dominated by radiation modifies the final power spectrum. This can be understood

as follows. Fluctuations in regions of a given scale can collapse under the influence of

gravity, but only if they are in casual contact with each other. The comoving casual

horizon of the Universe can be defined as XH =
∫ t

0 a−1(t)dt, and results XH ∝ a(t) for

the radiation-dominated epoch and XH ∝ a1/2(t) for the matter dominated epoch. For

the baryonic fluctuations entering the horizon during the radiation-dominated era, the

photon pressure prevents the fluctuations to collapse further. Only scales greater than

XH can collapse. In the case of dark matter fluctuations, if the expansion rate of the

Universe is faster than the collapse rate of dark matter, the fluctuations will, to first

order, not be able to grow until zeq, the epoch of matter-radiation equality.

The different growth rates of perturbations on scales larger and smaller than the hori-

zon during the radiation-dominated era modify the final power spectrum, which is char-

acterized by a turnover at a scale that corresponds to the matter-radiation equality.

Unfortunately, because we do not yet have a complete theory for the origin of the cosmo-

logical perturbations, the amplitude of P (k) is not predicted a priori but rather has to be

fixed by observations. Historically, the normalizing prescription of the theoretical power

spectrum involves the variance of the galaxy distribution, sampled with randomly placed

spheres of radii R. The predicted variance, 〈δ2
M 〉 = σ2(M), of the density perturbation

field is related to the power spectrum by

σ2(M) ≡ σ2(R) =

∫ ∞

0

dk

2π2
k2P (k)Ŵ 2

R, (1.22)

where

ŴR =
3

(kR)2
[sin(kR) − kR cos(kR)] (1.23)

is the Fourier transform of the spherical top-hat window function. The value of σ(R)

can be derived from the distribution of galaxies overdensity about unity for regions of

comoving size R = 8h−1 Mpc, or from other measures including the density of clusters

or amplitude of the CMB fluctuations. The most recent value of σ8 = 0.8159 ± 0.0086

(Planck Collaboration 2015). We then normalize the power spectrum by requiring that

σ(R = 8h−1 Mpc) = σ8.

1.2.1 Press-Schechter formalism

The collapse of a dark matter halo occurs when fluctuations become nonlinear and the

overdensity reach a critical value of the order of unity. The halo then grows in mass,

either by accreting material from their neighborhood or by merging with other halos.
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When the halo reaches dynamical equilibrium, generally perturbed due to the presence

of substructures within the large overdense region and tidal effects of neighbouring pertur-

bations (Lynden-Bell 1967), the halo is said to have virialised. At this stage the system

satisfies the viral theorem, in which the internal kinetic energy is half the magnitude of

the gravitational potential. According to the spherical collapse model (e.g. Gunn 1977;

Bertschinger 1985; White 1996; Shen et al. 2006), the virialisation of an object occurs

at a density contrast of δ = 18π2 in an universe with Ωm = 1 and ΩΛ = 0 (Bryan &

Norman 1998). Different values for the density contrasts, that give raise to different mass

definitions, are discussed in Chapter 3.

It is possible to formulate the growth of virialized dark matter halos and the statistical

distribution of matter by combining the notions of a Gaussian random field of density

perturbations, linear gravitational growth and spherical collapse. In the primordial den-

sity field, the small overdensities are commonly refereed to as peaks. Using the peak

formalism (Bardeen et al. 1986), we can connect these peaks to the material that later

collapses to form dark matter halos. The first step is to smooth the primordial density

field with a filter of a given scale, and then to select all the peaks that are above some

threshold value. Fig. 1.2 shows an illustration of the method. The arrows connect dark

matter halos to the overdensity field, δ(x, t), that is formed by overdense regions or peaks

(highlighted in red) and underdense regions or valleys. As we have seen, the peaks lin-

early grow over time until they reach a critical overdensity, shown in dashed line in the

figure. The critical overdensity of turnaround is δ0
crit = 1.686Ωm(z)0.0055 ≃ 1.686. Once

the peaks in δ(x, t) exceed δ0
crit, they turn around from the expansion of the Universe

and collapse to form dark matter halos. Therefore, regions that have collapsed to form a

dark matter halo at redshift z are associated with those regions for which

δ0 > δc(z) ≡ δ0
crit

D(z)
=

1.686Ωm(z)0.0055

D(z)
. (1.24)

To relate an object of mass M with an overdensity region with characteristic radius

R, so that M = (4π/3)ρ̄R3, we can use the Press-Schechter (PS) formalism (Press &

Schechter 1974), which allows us to calculate dark matter halo mass functions (mass

distribution), merger rates and clustering properties. In the PS formalism, we first define

a smooth density field

δS(x, R) ≡
∫

δ0(x′)W (x + x
′, R)d3x′, (1.25)

where W (x+x
′, R) is a window function of radius R and δ0(x) is a gaussian random field.

Then, we take the ansatz that the probability of δS > δc(z), P[> δc(z)], is the same as

the fraction of mass elements that at redshift z are contained in halos with mass greater

than M , F (> M). This results in a number density of collapsed objects with masses in
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Figure 1.2: Illustrative representation of the peak formalism, where the peaks in the overdensity
field grow over time until they reach a critical overdensity (dashed line), after that
they turn around from the expansion of the Universe and collapse to form dark
matter halos. The background image corresponds to an snapshot of the EAGLE
simulations (http://eagle.strw.leidenuniv.nl) at z = 0.

the range M, M + dM given by

n(M, t)dM =

√

2

π

ρ̄

M2

δc

σ
exp

(

− δ2
c

2σ2

)

∣

∣

∣

∣

dlnσ

dlnM

∣

∣

∣

∣

dM. (1.26)

This is equation is known as the PS mass function.

Bond et al. (1991) derived an extension of the PS formalism, known as extended Press-

Schechter formalism (EPS), that is based on the excursion set formalism and provides

an approximate description of the statistics of merger trees using a stochastic process.

The EPS formalism has been widely used in algorithms for the construction of random

realizations of merger trees (e.g. Kauffmann & Haehnelt 2000; Benson et al. 2005; Cole

et al. 2008; Neistein & Dekel 2008).

In the 1990s Bond, among others (Bower 1991; Kauffmann & Haehnelt 2000; Lacey

& Cole 1993; Sheth & Lemson 1999; Somerville & Kolatt 1999; Cole et al. 2000, 2008;

Zhang et al. 2008; Neistein & Dekel 2008), considered a spatial region of mass M2 and

radius R2. If δS(R2) > δc(t2), M2 already forms a collapsed object at time t2. Bond

calculated the fraction of M2 that was already in a collapse object of mass M1 at an

earlier time t1 < t2. This quantity provides the mass history of the halo, and thus its

merger history. The most convenient way to construct the mass history of a halo is to

start at the present time and follow the growth in mass backwards in time. Like following

the growth of a tree, we start from the trunk and work upwards following many small

http://eagle.strw.leidenuniv.nl
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branches, even pairs of branches that merge into bigger ones as time goes on.

Throughout this thesis we define S = σ2(M) as a mass variable and ω = δc(z) as a

time variable. We begin by following an excursion-set approach. If we relate a growth in

mass M to a change in δS, we find that ∆δS does not depend on the value of the smooth

density field δS(x, R) at the location x. Instead, it only depends on kc = 1/R, the size

of the region R in the k−space. Therefore, when kc is increased, δS executes a random

change, also known as Markovian random walk. Then, according to the PS ansatz, the

probability for a random walk, or in other words, the probability for δS being greater

than δc, is equal to the fraction of mass elements in halos greater than M as

f(S, ω)dS =
1√
2π

ω

S3/2
exp

[

− ω2

2S

]

dS. (1.27)

By knowing this, the halo mass history is constructed as follows. We begin by assuming

that a halo of mass Mj (corresponding to a mass variance Sj) at time ωj takes a small

time-step ∆ω back in time (note that ∆ω < 0). At the time ωj+1 = ωj + ∆ω, we

calculate the average mass of the halo in the past (also known as the main progenitor,

Mj+1 (Sj+1)), by following an excursion set approach and computing the probability for a

random walk originating at (Sj , ωj). Hence the probability we want is given by eq. (1.27)

upon replacing S by Sj+1 − Sj and ω by ωj+1 − ωj . Converting from mass weighting

to number weighting, we obtain the average number of progenitors at zj+1 in the mass

interval (Mj+1, Mj+1 + dM) which by time zj have merged to form a halo of mass Mj ,

P (Mj+1, zj+1|Mj , zj)dMj+1 =
Mj

Mj+1
f(Sj+1, ωj+1|Sj , ωj)

∣

∣

∣

∣

∣

dSj+1

dMj+1

∣

∣

∣

∣

∣

dMj+1. (1.28)

As a first approximation, we assume that P (Mj+1, zj+1|Mj , zj) = 0 for Mj+1 < Mj/q,

so that the main progenitor always has a mass Mj+1 ≥ Mj/q for a given q value. There-

fore, the average mass of the main progenitor can be written as

Mj+1(zj+1) =

∫ Mj

Mj/q
P (M |Mj , zj)MdM. (1.29)

We then replace P (M |Mj , zj) by eq. (1.28) and obtain

Mj+1(zj+1) =

∫ Mj

Mj/q

Mj

M

1√
2π

∆ω

∆S3/2
exp

[

− ∆ω2

2∆S

]

∣

∣

∣

∣

dS

dM

∣

∣

∣

∣

MdM, (1.30)

where ∆ω = wj+1 − wj corresponds to the redshift interval (zj+1, zj), and ∆S = S − Sj .

Defining u2 = ∆ω2/2∆S, the above integral yields
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Mj+1(zj+1) =
2√
π

Mj

∫ uj

uj+1

e−u2

du, (1.31)

here uj = ∆ω/
√

2(Sj − Sj) → ∞ and uj+1 = ∆ω/
√

2(S(Mj/q) − Sj). By integrating,

the halo mass history can be written in terms of the error function

Mj+1(zj+1) = Mj



1 − erf





∆ω
√

2S(Mj/q) − 2Sj







 . (1.32)

Eq. (1.32) describes the halo mass growth as a function of redshift. For certain values

of q (an arbitrary parameter that depends on the time step), Neistein et al. (2006) showed

that eq. (1.32) produces halo mass histories that are in very good agreement with those

taken from numerical simulations (Wechsler et al. 2002; Zhao et al. 2009).

Over the last decade, simulation-based works have analised the ‘shape’ of the halo mass

accretion history (hereafter MAH). For example, McBride et al. (2009) used an extensive

catalog of dark matter halos from the Millennium simulation, and found that about 25%

of halos have MAHs that are well described by a 1-parameter exponential form, while the

rest of the halos show plateaued late-time growth that is shallower than an exponential,

and only a 20% Milky-Way mass to 50% cluster mass halos experience late-time growth

that is steeper than an exponential. McBride et al. (2009) then concluded that these

deviations from exponential growth are better fit by the function M(z) ∝ (1 + z)βeγz.

Similarly, Wu et al. (2013) analised a sample of 96 zoom-in simulation of ∼ 1014 M⊙ halos,

and compared various parametrizations for the halo MAH, concluding that the pure

exponential model does not provide the curvature needed to fit the data. In addition,

Behroozi et al. (2013) noted that the pure exponential parametrization of the MAH

predicts that high-redshift progenitor histories cross. To fix this, they used the Bolshoi

simulations and parametrize the halo MAH of a single halo mass using a double power-

law times an exponential, and then parametrized the ratios of progenitor masses for other

halo masses.

The general conclusion is that the halo mass accretion history seems to be well de-

scribed by a power-law times an exponential, but it is still not entirely clear whether

the parameters in the functional form are correlated (Wong & Taylor 2012), and even

whether the functional form (power-law-exponential) is physical or an numerical artifact.

Various works have found that the build-up of dark matter halos in CDM models indeed

consists of an early phase of fast accretion and a late phase of slow accretion. Li (2008)

proposed that the time when a halo reaches its maximum virial velocity divides its mass

assembly history in two phases, where the fast accreting phase is dominated by major

mergers and the slow accretion phase is dominated by minor mergers. Whereas Zhao et al.

(2003) showed that the two phases are separated by the time when the halo concentration



1.2. Structure formation 17

reaches a value of ∼ 4, and the typical binding energy of the halo is approximately equal

to that of a singular isothermal sphere with the same circular velocity.

In view of this, in Chapter 2 we aim to provide a physical explanation for the ‘shape’

of the halo MAH. We further analyse eq. (1.32) as well as the analytic formulation of

Neistein et al. (2006). We conclude that the change of phase in the halo MAH (from fast-

growth to slow-growth) is physical and show that the halo MAH can be well described by

a power-law times an exponential. In addition, we derive an analytic model that relates

the halo MAH with the primordial density perturbation field and linear power spectrum.

In Chapter 3 we analyse the halo MAH using a series of dark matter only cosmological

simulations from the OWLS project, and investigate the connection of the halo MAH

with the halo’s concentration and density profile.

In the following subsection, we introduce numerical simulations. In Chapter 3 we

discuss how to compute mergers trees as well as the necessary numerical convergence

conditions.

1.2.2 Cosmological simulations

Numerical simulations have become an almost indispensable tool in astrophysical re-

search. Of interest to us are cosmological simulations, whose detailed description of the

evolution of the Universe has reached an impressive point of maturity and accuracy. As

an illustration, Fig. 1.3 shows a ‘slice’ of the Universe at z = 0 (taken from the EAGLE

simulations), together with two regions zoomed-in by a factor of 1/2 and 1/5, respec-

tively. The figure shows a clear example of the detailed representation of the Universe

that modern cosmological simulations are able to achieve.

Throughout this thesis we divide numerical simulations into two categories, N -body

simulations and hydrodynamical simulations. N -body simulations focus on simulating

collisionless dark matter through different particle-based methods that compute the grav-

itational interactions, whereas hydrodynamical simulations follow not only the gravita-

tional interactions of dark matter but also the hydrodynamical forces on individual mass

(or fluid) elements of baryonic matter. The size and resolution of numerical simulations

depend on the size of the region, so that they fairly represents the object(s) of study. For

example, typical sizes of simulated volumes are generally ∼ 1 Mpc scale for an individ-

ual galaxy, 10 − 100 Mpc for a galaxy population, and > 100 Mpc for a galaxy cluster

population. The mass resolution generally varies from ∼ 105 M⊙ up to ∼ 1010 M⊙, on

resolution scales of a few hundred parsec for individual galaxies to above the kiloparsec

scale for cosmological boxes.

In N -body simulations we follow the motion of N collisionless particles, whose po-

sitions are expressed in comoving units. Since gravity is a long-range force, the force

acting on a given particle depends on the position of all the other particles, that is equiv-
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Figure 1.3: Zoom-in slices of the Universe at z = 0 taken from the EAGLE simulations.

alent to solve a set of 2N coupled first-order differential equations. To do it efficiently

various methods have been implemented. (i) Tree algorithm: in this algorithm all the

other particles are grouped together systematically according to their distances to the

particle for which the force is to be calculated, and the force from each group is then

replaced by its multipole expansion (Barnes & Hut 1986). (ii) Particle-mesh algorithm

(PM): in this case the computational box (assumed to have size L) is divided into a grid

of M3 meshes with constant size L/M and the gravitational forces are computed in each

grid point according to its particle distribution (e.g. Hockney & Eastwood 1988). (iii)

Particle-particle-particle-mesh algorithm (Tree-PM): this method is implemented in the

simulations we use throughout this thesis. As in the particle-mesh algorithm, long-range

forces are computed by PM while the forces between particles with distance less then

about 2L/M are computed directly by calculating the individual gravitational forces (see

Couchman 1991). For a more detailed overview of the different techniques for cosmolog-

ical simulations, the reader is refereed to Dolag et al. (2008).

An obvious limitation of N -body simulations is that objects with masses below the

mass resolution are not represented in the simulation. Finite mass resolution also limits

the ability to study the internal structures (density profiles, shapes, substructures) of

objects with masses not much larger than the mass resolution. Typically one requires

more than ∼ 1000 particles in order to have a sufficiently reliable representation of the

overall shape and density profile of a collapsed object.

Hydrodynamical simulations, which are more expensive to compute than N -body sim-

ulations, are divided into two different approaches: smoothed particle hydrodynamics
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(SPH) method, where the mass of the gaseous fluid is parceled out to a discrete number

of particles (Lucy 1977; Gingold & Monaghan 1977; Monaghan 1992, but see Price 2012

for a recent review), and Eulerian or mesh-based method, that typically utilizes a scheme

called adaptive mesh refinement or AMR (Berger & Colella 1989; Stone & Norman 1992,

but see Springel 2010 for a description of the most recent AMR simulation with moving

mesh). In this last method, space itself is divided up into a grid, and the flow of gas be-

tween neighboring cells of this grid is computed over time. In this thesis we used N -body

and SPH simulations from the OWLS (Schaye et al. 2010) and EAGLE project (Schaye

et al. 2015).

The fundamental idea of SPH is to represent a fluid by a Monte Carlo sampling of

its mass elements using a set of N particles. Each particle is assigned with the mass of

the fluid element it represents, and in the Lagrangian formulation this mass is conserved.

These particles can be used to sample any field of the fluid, so that the field value at an

arbitrary position x can be approximated by 〈Ai〉 = 〈A(x)i〉 =
∑

j
mj

ρj
AjW (xi − xj , h),

where W is a smoothing kernel of radius h. SPH, at least in its standard implementation,

introduces spurious pressure forces on particles in regions where there are steep density

gradients, in particular near contact discontinuities. This results in a boundary gap of the

size of an SPH smoothing kernel radius, over which interactions are severely damped. In

Chapter 5 we give an overview of the most basic problems of SPH and how to overcome

them, whereas in Chapter 3 we focus on the resolution problems that arise when building

merger trees from cosmological simulations.

1.2.3 Dark matter halo internal structure

Over the past few years large cosmological simulations have been performed to determine

the properties of dark matter halos, including density profiles, shapes and accretion histo-

ries (see e.g. Springel et al. 2005; Klypin et al. 2011; Bryan et al. 2013). These properties

are of particular interest, as forming galaxies depend on the structural properties of the

halos in which they are embedded.

During hierarchical growth, halos acquire a density profile with a near universal shape,

that can be described by the following expression

ρ(r) =
ρcritδc

(r/r−2)(1 + r/r−2)2
, (1.33)

which known as the ‘NFW profile’ (Navarro et al. 1997, hereafter NFW). In the expression,

r−2 is the scale radius that represents the transition from a shallow r−1 inner profile to

a steeper r−3 outer profile, ρcrit(z) = 3H2(z)/8πG (with H(z) given by eq. 1.15) and δc

is a dimensionless parameter.

A halo’s physical extent is given by its virial radius, r200, which is often defined as
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the radius within which the mean density is 200 times the background critical density

(in Chapter 3 we discuss alternative definitions of the virial radius and its impact on

the halo MAH). The ratio of the virial radius and the NFW scale radius is a measure

of the concentration of the density profile, and so this ratio is called the concentration

parameter

c =
r200

r−2
. (1.34)

The NFW density profile can be described by just two parameters, halo mass, M , and

concentration, c. Thus, given the NFW profile, only a relation between concentration

and halo mass (hereafter, the c − M relation) is needed to fully specify halo structure

at fixed mass. Therefore, numerous studies have been undertaken to improve the c − M

calibration.

Despite its importance, there is still no solid agreement on the dependence of halo

concentration on halo mass and redshift. The discrepancies are generally driven by cos-

mology (a small change in the adopted cosmology has important effects on the structure

of dark matter halos, Macciò et al. 2008) or dynamical state of the selected dark matter

halos (a halo’s internal structure differs significantly depending on whether it is relaxed

or undergoing a merger event, Klypin et al. 2014; Ludlow et al. 2012). In Chapter 4 we

explore the dynamical state of dark matter halos and their internal structure. We find

that since the density profiles of unrelaxed halos are poorly captured by the NFW fitting

formula, their concentration parameter is clearly affected by transient departures from

equilibrium.

It has been shown that a halo concentration not only depends on halo mass but also on

the halo formation time. The halo formation (or assembly) time is traditionally defined

as the point in time when the halo mass reached a fraction of the total mass today. Low-

mass halos typically assemble earlier, when the Universe was denser, than high-mass

halos do. As a result, low-mass halos are more concentrated. It has then been concluded

that concentration correlates with formation time (Bullock et al. 2001; Wechsler et al.

2002), and it has also been found that concentration correlates with the mass variance

σ (e.g. Zhao et al. 2009; Prada et al. 2012; Ludlow et al. 2014; Dutton & Macciò 2014).

However, the origin of these correlations is still not entirely clear. In Chapter 3 we

investigate the origin for the c − σ relation and show the halo MAH is the physical link

that drives the relation. In Chapter 4 we investigate the connection between halo mass

growth an concentration. We show that the change of slope in the z ∼ 0 c−M relation at

a mass scale of 1011 M⊙ is driven by the change in the functional form of the halo MAH,

which goes from being dominated by an exponential (for high-mass halos) to a power-law

(for low-mass halos). During the latter phase, the core radius remains approximately

constant, and the concentration grows due to the drop of the back- ground density. In
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the high-redshift regime, the halo MAH is mainly characterized by exponential growth.

During this time the core radius increases simultaneously with the virial radius, hence

the concentration hardly grows.

1.3 Galaxy formation

According to the classical picture of structure formation presented in §1.2, dark matter

halos form at the peaks of the primordial density field. There are recent claims that

the dark matter accretion rate onto halos is tightly coupled with the accretion rate of

baryonic gas (Wetzel & Nagai 2015). However, unlike dark matter, gas follows more

complicated physics. It cools, mixes, shocks, remains hot and eventually cools again. In

this section we briefly describe the physics of gas cooling, the formation of galaxies, and

its connection with the hierarchical growth paradigm of dark matter halos.

After nonlinear gravitational collapse, dark matter halos reach an equilibrium config-

uration, ‘virialize’, and the hot gas in the surrounding areas either reaches hydrostatic

equilibrium in the outskirts of the halo, or is accreted and accumulates as dense, cold gas

clouds to potentially form a protogalaxy at the center of the dark matter halo (White &

Rees 1978; Blumenthal et al. 1986; Dubinski 1994; Mo et al. 1998). While cooling and

collapsing under its own gravity, the gas clouds may fragment into small high-density

cores, and eventually form stars and give rise to a visible galaxy (see McKee & Ostriker

2007 for a recent review on models of star formation).

In the hierarchical structure formation model briefly described in §1.2.1, small halos

form at high redshift and cooling within them is predicted to be very efficient. This was

an interesting problem in the late 1970s, when observations were clearly showing that

galaxies were not very big and only a small fraction of all baryons were in cold gas or stars.

The works of Silk & Rees (1998), Rees & Ostriker (1977), Binney (1977) and White &

Rees (1978) suggested that collisions between gas from the intergalactic medium falling

into the halo where preventing gas from cooling and producing accretion shocks. When

accretion shocks occur, gas is heated and the gravitational energy of infall is converted

into thermal energy. Only gas with a cooling time smaller than the dynamical time

(or Hubble time) would be able to infall into the galaxy. Otherwise, it would adjust

its density and temperature quasi-statically, forming a hot hydrostatic halo atmosphere,

pressure supported against gravitational collapse. As a result, the general conclusion

during the 1970s was that radiative cooling was limiting the mass of galaxies, but it was

not completely solving the overcooling problem.

Years later, it was shown that there are in fact two forms of energetic sources or

feedback that solve the overcooling problem from the 70s. One is the exploding stars,

also known as supernovae (SN), that release large amount of energy able to expel the gas

out of the galaxy (McKee & Ostriker 2007; Efstathiou 2000; Murray et al. 2005), and
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produce a sort of recycling galactic fountain that acts as an extra mode of accretion onto

galaxies (Oppenheimer et al. 2010; Übler et al. 2014). The other is the active phase of

the central supermassive black hole (SMBH), also known as active galactic nuclei (AGN),

that generates large radio jets that expand in the form of bubbles on scales > 30kpc, and

are then able to heat the gas from the surrounding halo (Voit & Donahue 2005; Fabian

et al. 2006; De Young 2010). This is generally referred to as “radio mode” feedback

(Croton et al. 2006), which is believed to quench the diffuse gas accretion rates onto

galaxies (Dubois et al. 2012).

Due to the complexity in the interaction of all the possible mechanisms (accretion

shocks, SN events and AGN feedback) that modify the manner in which galaxies accrete

gas, a model of galaxy gas accretion is still missing. In Chapter 5 we study how the hot

halo forms and prevents gas from cooling, and in Chapter 6 we present a semi-analytic

model of gas accretion rate onto galaxies.

1.4 Thesis outline

The outline of the subsequent chapters of this thesis is as follows. Chapters 2 and

3 concern the physics that drives the halo MAH and its impact on the halo internal

structure. An analytic derivation of the halo MAH from the growth rate of initial density

perturbations is presented in Chapter 2. This calculation shows that the halo MAH can be

well described by an exponential function of redshift in the high-redshift regime. However,

in the low-redshift regime the halo mass growth slows down, and can be described by

a power law because the growth of density perturbations is halted in the dark energy

dominated era due to the accelerated expansion of the Universe. Chapter 3 derives a

semi-analytic model for the halo MAH that depends on the halo formation time and

concentration, and utilizes the analytic relations from Chapter 2 to show that the halo

MAH links the halo concentration with the initial density perturbation field.

Chapter 4 concerns the physical connection between the dark matter halo concentration

and its assembly history. In this chapter a semi-analytic, physically motivated model for

dark matter halo concentration as a function of halo mass and redshift is presented.

The semi-analytic model combines the analytic model from Chapter 2 with an empirical

relation between concentration and formation time obtained in Chapter 3. The model

predicts a change of slope in the z ∼ 0 concentration-mass relation at a mass scale of

1011 M⊙, which is due to the change in the functional form of the halo mass history.

Chapters 5 and 6 connect the evolution of the dark matter to the evolution of baryons.

Chapter 5 concerns the formation the hot hydrostatic halo formation and its impact on

galaxy evolution. This chapter investigates how the presence of energy sources (like SN

and AGN) increases the hot halo mass and reduces the mass scale of hot halo formation.

It also derives a new semi-analytic approach to calculate a critical mass scale for hot
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halo formation. Chapter 6 focuses on the physics that drives the gas accretion rate onto

galaxies at the center of dark matter halos. The calculations show that the accretion rate

onto the galaxy increases with increasing halo mass and flattens in the halo mass range

1011.7 − 1012.7 M⊙ and at z ≤ 2. A semi-analytic model of gas accretion onto galaxies is

presented, that accurately reproduces the gas accretion rates from the simulations.

Finally, Chapter 7 summarizes the main findings of this thesis, discusses the impact of

this study and presents ideas for future work.





2
The accretion history of dark

matter halos
This chapter unravels the physics behind halo mass accretion history and the origin of the function

that describes its shape.

Understanding the universal accretion history of dark matter halos is the first step to-

wards determining the origin of their structure. In this chapter, we make use of the EPS

formalism to derive the halo mass accretion history, hereafter MAH, from the growth rate

of initial density perturbations. We show that the halo MAH can be well described by an

exponential function of redshift in the high-redshift regime. However, in the low-redshift

regime the MAH follows a power law because the growth of density perturbations is halted

in the dark energy dominated era due to the accelerated expansion of the Universe. The

main finding presented in this chapter is the derivation of an analytic model for halo MAH,

that follows the expression M(z) = M0(1 + z)af(M0)e−f(M0)z, where M0 = M(z = 0), a

depends on cosmology and f(M0) depends on the linear matter power spectrum. The an-

alytic model does not rely on calibration against numerical simulations, is suitable for any

cosmology and is in very good agreement with the latest empirical models for the MAH

in the literature. Readers unfamiliar with this topic are encouraged to first read §1.1 and

§1.2 for a brief description of the standard cosmological framework, structure formation

and for a better understanding of the notation used throughout this chapter. In addition,

for readers interested in applying the model of halo MAH to their own studies we provide

a step-by-step description on how to implement the MAH model in Appendix A as well

as numerical routines onlinei.

iAvailable at https://bitbucket.org/astroduff/commah and
http://astro.physics.unimelb.edu.au/Research/Public-Data-Releases/COMMAH

https://bitbucket.org/astroduff/commah
http://astro.physics.unimelb.edu.au/Research/Public-Data-Releases/COMMAH
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2.1 Brief introduction

Throughout the last decade, there have been many attempts to quantify halo MAHs

using catalogues of halos from numerical simulations (Wechsler et al. 2002; McBride

et al. 2009; Wang & Abel 2007; Genel et al. 2010; Fakhouri et al. 2010; van de Voort

et al. 2011; Faucher-Giguère et al. 2011; Johansson 2013; Benson & Bower 2011; Wu

et al. 2013; Behroozi et al. 2013). Wechsler et al. (2002) characterized the MAH of

halos more massive than 1012M ⊙ at z = 0 using a one-parameter exponential form eβz.

In their work, Wechsler et al. (2002) limited their analysis to the build-up of clusters

through progenitors already larger than the Milky Way halo. Similarly, McBride et al.

(2009) limited their analysis to massive halos and found that a large fraction were better

fitted when an additional factor of (1 + z)α was added to the Wechsler et al. (2002)

exponential parametrization, yielding a MAH of the form M ∝ (1 + z)αeβz. Wong &

Taylor (2012) investigated whether the MAH can be described by a single parameter

function or whether more variables are required. They utilized principal component

analysis and found that despite the fact that the McBride et al. (2009) two-parameter

formula presents an excellent fit to halo MAHs, the parameters α and β are not a natural

choice of variables as they are strongly correlated. Recently, van den Bosch et al. (2014)

studied halo MAHs extracted from N -body simulations and semi-analytical merger trees.

However, so far no universal and physically motivated model of a universal halo MAH

function has been provided.

An alternative method to interpret the complex numerical results and to unravel the

physics behind halo mass growth, is the EPS formalism (introduced in §1.2.1). EPS

theory provides a framework that allows us to connect the halo MAH to the initial density

perturbations. Neistein et al. (2006) showed in their work that it is possible to create

halo MAHs directly from EPS formalism by deriving a useful analytic approximation for

the average halo mass growth. In this chapter we aim to provide a physical explanation

for the ‘shape’ of the halo MAH found by earlier simulation-based works, using both the

EPS theory and the analytic formulation of Neistein et al. (2006). In addition, we derive

an analytic model for the halo MAH, which depends mainly on the linear power spectrum

and is suitable for any cosmology.

This chapter is organized as follows. We begin with a discussion of halo mass growth

and show in §2.2 that the halo MAH can be described by a power law and an exponen-

tial as originally suggested from fits to cosmological simulation data by McBride et al.

(2009). We then derive a simple analytic model based on the EPS formalism and com-

pare it to the latest empirical halo MAH models from the literature. We discuss how the

different cosmological parameters impact on halo mass growth in §2.3. Finally, we briefly

summarize the main findings of this chapter in §2.4.
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2.2 On the physics behind the halo mass history

In Chapter 1 we discussed how dark matter halos initially grow from small density per-

turbations. As long as the density perturbations are small (in the so-called linear regime),

they grow in amplitude in proportion to the linear growth factor D(z), defined as

D(z) = D(z = 0)H(z)

∫ ∞

z

1 + z′

H(z′)3
dz′, (2.1)

with D0 = D(z = 0) = 1 and H(z) = H0[Ωm,0(1 + z)3 + ΩΛ,0]1/2. However, the density

perturbations collapse to form a dark matter halo when they exceed the critical overden-

sity threshold value δc(z) = δ0
crit/D(z) = 1.686/D(z). Using the EPS formalism, Neistein

et al. (2006) built dark matter halo merger trees and derived an analytic equation for the

average halo MAH over an ensemble of merger trees. They defined Mi(zi) as the mass

of the most massive halo (main progenitor), along the main branch of the merger tree at

redshift zi in step i, and obtained the subsequent mass via the following expression

Mj+1(zj+1) = Mj



1 − erf





∆ω
√

2S(Mj/q) − 2Sj







 . (2.2)

In §1.2.1 of Chapter 1 we showed the mathematical derivation of this expression. How-

ever, in order to provide a physical motivation for the ‘shape’ of the halo MAH found in

simulation-based works, in §2.2.1 we show how eq. (2.2) can be rewritten in a differential

form, and show that the halo MAH is predicted to be an exponential at high redshift,

and a power law at low redshift. In §2.2.2, we adopt the power-law exponential form and

use it to provide a simple analytic model for halo MAHs. Finally, we compare our results

with the latest models of halo mass history from the literature in §2.2.3.

2.2.1 Mass accretion in the high- and low-z regimes

To construct the MAH of a given parent halo, it is most convenient to begin with the

parent halo of mass Mj at time ωj = δc(zj) and mass variance

Sj =
1

2π2

∫ ∞

0
P (k)Ŵ 2(k; Rj)k2dk, (2.3)

where P (k) is the linear power spectrum and Ŵ (k; Rj) the Fourier transform of a top

hat window function. We then go backwards in time following the merger events of

its most massive progenitors. Therefore, for a small time-step ∆ω back in time (with

ωj = δc(zj) and ∆ω < 0), eq. (2.2) gives the average mass of the main progenitor Mj+1

(Sj+1) by following an excursion set approach, to calculate the probability for a random

walk originating at (Sj , ωj) and executing a first upcrossing of the barrier ωj+1 = ωj +∆ω
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at Sj+1.

Eq. (2.2) becomes linear in ∆ω for small enough ∆ω. Therefore the MAH, MEPS(z),

can be constructed by iterating MEPS(∆ωi + ∆ωj |M0) = MEPS(∆ωi|MEPS(∆ωj |M0)),

where we term M0 as the initial mass of the parent halo. The rate of change, dMEPS/dω,

can be computed as

dMEPS

dω
= lim

∆ω→0

MEPS(∆ω) − M0

∆ω
= −M0 lim

∆ω→0

1

∆ω
erf





∆ω
√

2(Sq − S)



 , (2.4)

with Sq = S(MEPS/q) and S = S(MEPS). Using the fact that limx→0 erf(x) → 2x/
√

π,

yields

dMEPS

dω
= −

√

2

π

MEPS
√

Sq − S
. (2.5)

The above equation can be written in terms of redshift by replacing dω = d(δ0
crit/D(z))

as,

dMEPS

dz
= −

√

2

π

MEPS
√

Sq − S

1.686Ωm(z)0.0055

D(z)

[

0.0055dΩm(z)/dz

Ωm(z)
− dD(z)/dz

D(z)

]

. (2.6)

Since 0.0055(dΩm(z)/dz)/Ωm(z) ∼ 0 and Ωm(z)0.0055 can well be approximated by 1,

and eq. (2.6) can be written as

dMEPS

dz
=

√

2

π

MEPS
√

Sq − S

1.686

D(z)2

dD(z)

dz
. (2.7)

Our next step is to work with eq. (2.7) and analyse how the evolution of MEPS(z) is

governed by the growth factor. We then look for two practical approximations for the

growth factor in the high- and low-redshift regimes and investigate the ‘shape’ of MEPS(z)

in these regimes by integrating eq. (2.7). However, in addition to the redshift dependence

of the growth factor, in eq. (2.7) an extra redshift dependence is introduced through the

quantity [Sq − S]−1/2 = [S(M(z)/q) − S(M(z))]−1/2. Before integrating eq. (2.7), we

calculate how the value of [S(M(z)/q) − S(M(z))]−1/2 changes with redshift, in order to

find a suitable first order approximation to simplify the calculations.

We replace S = σ2 (with σ being the variance of the primordial density field) and

approximate σ ≈ Mγ , where γ = −0.063 for M ≤ 1012M ⊙ and γ = −0.21 for M >

1012M ⊙, to obtain
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Figure 2.1: Linear growth factor against redshift. The dark blue solid line shows the growth
factor obtained by performing the integral given by eq. (2.1). The purple dashed
line corresponds to the low-redshift approximation in eq. (2.9). Similarly, the green
dot-dashed line shows the approximation of the growth factor in the high-redshift
regime.

[S(M(z)/q) − S(M(z))]−1/2

[S(M0/q) − S(M0)]−1/2
=

(

M(z)

M0

)−γ

, (2.8)

where M0 = M(z = 0). In cases where M(z) is up to 2 order of magnitudes smaller than

M0, the right hand side of eq. (2.8) is close to unity ((M(z)/M0)−γ = (10−2)−γ ≈ 1.33 for

low-mass halos and ≈ 2.63 for high-mass halos). We therefore approximate (M(z)/M0)−γ

by 1. We find that at low redshift, the approximation [S(M(z)/q) − S(M(z))]−1/2 ≈
[S(M0/q) − S(M0)]−1/2, carries a ∼ 5% error for M(z) ≤ 1012M ⊙ and a 15% error for

M(z) > 1012M ⊙. Earlier in the accretion history, the errors may be as large as ∼ 20%

and 40% for M(z) ≤ 1012M ⊙ and M(z) > 1012M ⊙, respectively. We demonstrate in

§2.2.3 that these errors do not affect the final M(z) model, which we show provides very

good agreement with simulation-based MAH models.

The growth factor can be approximated with high accuracy by

D(z) =







1.34
1+z if z ≫ 1,

1
ln(e+1.5z) if z ≪ 1,

(2.9)

for all cosmologies. Fig. 2.1 shows the growth factor as given by eq. (2.1) (solid dark

blue line), together with the approximations in the high- and low-redshift regimes (dot-

dashed green and purple lines, respectively). The high-redshift approximation for D(z)

is an exact solution for an Einstein-de Sitter (EdS) cosmology (ΩΛ = 0). However, the

growth rate slows down in the cosmological constant dominated phase, so that linear
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perturbations grow faster in an EdS universe.

We next estimate MEPS(z) in the high- and low-redshift regimes by substituting the

two expressions from eq. (2.9) into eq. (2.7). In the high-redshift regime (where z ≫ 1),

dMEPS

MEPS
=

√

2

π

1
√

Sq − S

1.686

D(z)2

dD(z)

dz
dz, (2.10)

dMEPS

MEPS
= −f(M0)dz,

where f(M0) = 1/
√

S(M0/q) − S(M0) is a function of halo mass. Integrating this last

equation, we obtain

MEPS(z) = M0e−f(M0)z at z ≫ 1. (2.11)

Thus, we find that to a first order approximation the halo MAH can be described by an

exponential (M(z) ∼ eβz) in the high-redshift regime, as suggested by Wechsler et al.

(2002). In the low-redshift regime, from eq. (2.10) and the bottom part of eq. (2.9), we

find

dMEPS

MEPS
= − 1.34

1.8 + z
f(M0)dz.

Integrating the above expression yields

MEPS(z) = M0(1 + 0.5z)−1.34f(M0) at z ≪ 1. (2.12)

Therefore, in the low-redshift regime, a power law (M(z) ∼ (1 + z)α) seems necessary

(as suggested by McBride et al. 2009) because the growth of density perturbations is

halted in the dark energy dominated era due to the accelerated expansion of the Uni-

verse.

The above conclusion is valid under the assumption that the term (MEPS/M0)γ is

negligible, an important and generally rough approximation. In the case where the term

is included, we obtain that in the high redshift regime MEPS(z) ∝ z−1/γ ≈ z15.8 for

low-mass halos and MEPS(z) ∝ z4.7 for high-mass halos. Similarly, in the low-redshift

regime we find MEPS(z) ∝ ln(1 + Cz)−1/γ , with C constant. This redshift dependence

of MEPS(z) is in agreement with the analytic model presented by Neistein et al. (2006)

(see eq. A.5 of their work). Fig. 2.2 shows a comparison between the halo mass histories

predicted by the analytic model of Neistein et al. (2006) (orange solid line, where we

used eq. A.5 and the q = 2.3 case), the simulation-based model of van den Bosch et al.



2.2. On the physics behind the halo mass history 31

Figure 2.2: Comparison between the halo mass histories predicted by the analytic model of
Neisten et al. (2006) (orange solid line), the simulation-based model of van den
Bosch et al. (2014) (red dashed line) and the approximated halo mass histories
given by eq. (2.12) for the low-redshift regime (blue dashed line), and by eq. (2.11)
for the high-redshift regime (blue dot-dashed line).

(2014) (red dashed line) and the approximated halo mass histories given by eq. (2.12) for

the low-redshift regime (blue dashed line), and by eq. (2.11) for the high-redshift regime

(blue dot-dashed line). It can be seen that in the ranges of low- and high-redshift, the

approximated expressions for the halo MAH (power-law and exponential) are in very

good agreement with the models, from what we conclude that the functional form power-

law times exponential is a fairly good approximation, able to capture the shape of the

halo MAH.

It is interesting to note that regardless the functional form that describes the halo

MAH, we find that the halo mass growth slows down at low redshift. Throughout this

work we claim that the reason for such behavior is the accelerated expansion of the

universe. To understand whether the change in growth is entirely due to cosmology, or

whether it is also due to power spectrum, we investigate if the slow growth is present in

universes with ΩΛ = 0 and Ωm ≤ 1. Since in both cases D(z) = 1/(1 + z), and the mass

variance can be approximated as a power-law in mass, with γ lower than 1, we find that

eq. (2.7) does not predict a transition of fast to slow growth.

2.2.2 Analytic mass accretion history model

In this subsection we provide an analytic model for the halo MAH based on the EPS

formalism. This model is not calibrated against numerical simulations and allows an

exploration of the physical processes involved in the halo mass growth. Based on our

analysis from §2.2.1, we begin by assuming that the halo MAH can be well described by

the simple form
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M(z) = M0(1 + z)αeβz. (2.13)

The presence of the function S(M0) in both the high-redshift exponential (eq. 2.11) and

the low-redshift power law (eq. 2.12) explains the correlation between α and β found by

Wong & Taylor (2012). We estimate the relation between α, β and S(M0) by replacing

MEPS(z) in eq. (2.7) with the expression (2.13). Evaluating this at z = 0 we obtain

α + β = 1.686(2/π)1/2f(M0)
dD

dz
|z=0. (2.14)

Assuming that M(z) follows the relation shown in eq. (2.11) for the high-z regime we

find

β = −f(M0), (2.15)

α = af(M0), (2.16)

with a =
[

1.686(2/π)1/2 dD
dz |z=0 + 1

]

. The above equations introduce a halo MAH model

directly derived from the EPS theory, where the parameters α and β are related through

the variance of the smoothed density field, S(M0). The quantity q is a free parameter

which can be determined by adding an extra equation that restricts the model. We do

this by defining the halo formation redshift, z̃f , as the redshift where M(z̃f) = M0/q.

From eq. (2.13) we obtain

1

q
= (1 + z̃f)

af(M0)e−f(M0)z̃f , (2.17)

where f(M0) = 1/
√

S(M0/q) − S(M0).

The general relation between formation time and q was introduced by Lacey & Cole

(1993), using the expression

M(z) = M0

[

1 − erf

(

δc(z) − δc(0)
√

2(S(M0/q) − S(M0)

)]

, (2.18)

which describes the average mass of the main progenitors in the EPS merger tree. We

use eq. (2.18) to evaluate the halo mass at z̃f and find the distribution of formation times.

We follow the approach of Lacey & Cole (1993) and find

δc(z̃f) = δc(0) +
√

2f−1(M0)erf−1(1 − 1/q). (2.19)

We solve eqs. (2.17) and (2.19) and find q and z̃f for various halo masses. We then fit

the q − M0 and z̃f − q relations using a second order polynomial in log10 M for z̃f , and

obtain the following set of equations that describe the halo MAH,
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M(z) = M0(1 + z)af(M0)e−f(M0)z, (2.20)

a =

[

1.686(2/π)1/2 dD

dz
|z=0 + 1

]

, (2.21)

f(M0) = 1/
√

S(M0/q) − S(M0), (2.22)

q = 4.137z̃−0.9476
f , (2.23)

z̃f = −0.0064(log10 M0)2 + 0.0237(log10 M0) (2.24)

+1.8837.

The equations that relate q, z̃f and M0 are calculated assuming the WMAP5 cosmology,

but work for others cosmologiesii because the halo MAHs are mainly driven by the change

in σ8 and Ωm. We reiterate that unlike previous models based on EPS theory (e.g. van

den Bosch 2002a), the analytic model specified in the above equations was not calibrated

against any simulation data.

Note that in the model the parameter q, that depends on halo mass, is not within

the range 2 < q < 2.3 required by Neistein et al. (2006) through their analysis of the

distribution of the main progenitor masses. The main reason for this discrepancy is that

our model is based on EPS formalism but not directly derived from it since we impose

the functional form to be a power-law times an exponential, as a result the q parameter

obtained is not equivalent to that of Neistein et al. (2006).

The top panel of Fig. 2.3 shows a comparison between the analytic model given by eqs.

(2.20-2.24) (blue solid line), and the limiting case for the halo MAHs given by eq. (2.12) for

the low-redshift regime (purple dashed line) and by eq. (2.11) for the high-redshift regime

(green dot-dashed line). In the last case, we renormalized the MAH curve to match that

given by the analytic model at z = 7. This figure demonstrates how exponential growth

dominates the MAH at high redshift, and power-law growth dominates at low redshift,

as concluded in the previous section.

The bottom panel of Fig. 2.3 shows the formation time obtained from eqs. (2.17) and

(2.19), as a function of halo mass. As expected, larger mass halos form later. The right

Y-axis shows the values of q obtained when calculating formation time, whereas the top X-

axis shows the variance of the smoothed density field of a region that encloses the mass in-

dicated by the bottom X-axis. The values of the function f(M0) = 1/
√

S(M0/q) − S(M0)

are included in brackets. As can be seen from this figure, the larger the halo mass, the

lower the variance S(M0), the larger f(M0), and so the larger the factor in the expo-

nential that makes the halo mass halt its rapid growth at low redshift. For example, a

1014M ⊙ halo has a MAH mostly characterized by an exponential growth (∼ e−f(M0)z)

iiWe verified that the MAHs predicted by eqs. (2.20-2.24) are in excellent agreement with the simulations
for the WMAP1/3/9 and Planck cosmologies.
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Figure 2.3: Top panel: comparison between halo mass histories predicted by the analytic model
M(z) = M0(1 + z)af(M0)e−f(M0)z, given by eqs. (2.20)-(2.24) (blue solid line),
and the approximated halo mass histories given by eq. (2.12), for the low-redshift
regime (purple dashed line), and by eq. (2.11), for the high-redshift regime (green
dot-dashed line). Bottom panel: formation redshift against halo mass. Here the
formation redshifts were obtained by solving eqs. (2.17) and (2.19). The right
Y-axis shows the values of ‘q’ obtained when calculating the formation redshift,
whereas the top X-axis shows the variance of the smoothed density field of a region
that encloses the mass indicated by the bottom X-axis. The values of the function
f(M0) = 1/

√

S(M0/q) − S(M0) are shown in brackets.
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until redshift z = 1/f(M0) = 0.7, whereas a 1010M ⊙ halo only has an exponential growth

until redshift z = 1.6. Note, however, that our analytic model is not limited to the halo

mass ranges shown in the bottom panel of Fig. 2.3. It can be extended to any halo masses

and redshifts and the q − M0 and z̃f − M0 relations still hold.

In addition to the halo MAH, it is possible to calculate the accretion rate of a halo at

a particular redshift. In order to do that we differentiate eq. (2.13) with respect to time

and replace dz/dt by −H0[Ωm,0(1 + z)5 + ΩΛ,0(1 + z)2]1/2 to obtain

dM(z)

dt
= 71.6 M ⊙ yr−1

(

M(z)

1012M ⊙

)(

h

0.7

)

f(M0)[(1 + z) − a][Ωm,0(1 + z)3 + ΩΛ,0]1/2,

(2.25)

where a is given by eq. (2.21) and f(M0) is given by eq. (2.22). Note that the above

formula will give the accretion rate at redshift z of a halo that has mass M0 at redshift

z = 0, and mass M(z) at redshift z.

The physical relation derived between the parameters describing the exponential and

power law behaviour implies that a single parameter accretion history formula should

be seen in numerical simulations. In the following chapter we investigate the α and β

parameter dependence in more detail, and we determine the intrinsic relation (which

cannot be explored under the EPS formalism) between halo assembly history and inner

halo structure.

2.2.3 Comparison with previous studies

In this section we briefly describe the simulation-based halo MAH models presented in

van den Bosch et al. (2014) (vdB14) and McBride et al. (2009) (MB09), and contrast

them with our analytic model given by eqs. (2.20-2.24). The panels in Fig. 2.4 show

a comparison of our mass history model (turquoise solid lines) to the models of vdB14

(purple dashed lines) and MB09 (dark blue dot dashed lines). vdB14 used the MAHs from

the Bolshoi simulation (Klypin et al. 2011) and extrapolated them below the resolution

limit using EPS merger trees. They then used a semi-analytic model to transform the

average or median MAH for a halo of a particular mass taken from the Bolshoi simulation,

to another cosmology, via a simple transformation of the time coordinate. Using their

publicly available code we calculated the mass histories of 109, 1011, 1013 and 1015M ⊙

halos for the WMAP1 cosmology. We find good agreement between our model and vbB14

for all halo masses. The main difference occurs for the mass histories of high-mass halos

(M0 > 1013M ⊙), where vdB14 seems to overpredict the mass growth above z = 4 (e.g.

by a factor of ∼ 6 at z = 9). In addition, vdB14 compared their model to those of Zhao

et al. (2009) and Giocoli et al. (2012), and found that both works predict smaller halo

mass growth at z > 1.5.
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Figure 2.4: Comparison of halo mass history models. The analytic model presented in this work
(turquoise solid lines) is compared with the median mass history obtained from the
Bolshoi simulation and merger trees from van den Bosch et al. (2014) (purple dashed
lines) and the best-fitting relations from the Millennium simulation from McBride
et al. (2009) (dark blue dot dashed lines). The comparisons are shown for four halo
masses and for consistency with McBride et al. (2009) we assumed in our model and
in the van den Bosch et al. (2014) model the WMAP1 cosmology.

We also compare our model to the MB09 mass history curves. MB09 used the Millen-

nium simulation (Springel et al. 2005) and separated their halo sample into categories

depending on the ‘shape’ of the MAHs, from late-time growth that is steeper than expo-

nential to shallow growth. We find that the fitting function that best matches our results

is from their type IV category. We find good agreement with the MB09 formula.

Fig. 2.4 demonstrates that the physically motivated analytic model presented in this

work yields MAHs that are in good agreement with the results obtained from numerical

simulations. However, in contrast to the models based on fits to simulation results, our

analytic model can be extrapolated to very low masses and is suitable for any cosmol-

ogy.

2.3 Impact of cosmological parameters on halo MAH

In this section we investigate how the cosmological parameters ns, σ8, h, ΩΛ,0 and Ωm,0

(introduced in §1.1 and §1.2) impact on the growth rate of dark matter halos. We use

the analytic model given by eqs. (2.20-2.24), and analyze how the variation of each

cosmological parameter modifies the halo MAHs.

(i) Power spectrum index. The primordial power spectrum, as predicted by the

standard cosmological model, is Pi(k) = Akns , where ns is the spectral index that most

inflationary models predict to be approximately 1 (the case of ns = 1 is called the scale-

invariant Harrison-Zeldovich spectrum, Harrison 1970; Zeldovich 1972). The value of ns
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is very important because it determines the shape of the power spectrum as it was set by

the early universe. A change in ns alters the power in the fluctuations of a given scale,

and as a result the growth of structures changes. To investigate the impact of ns on the

halo MAH we first analyse how the linear power spectrum, P (k), and variance of the

primordial density field, σ, change in cases where ns is 2, 1, 0 and −1. The top-left panel

of Fig. 2.5 shows the power spectrum P (k) = Pi(k)T 2(k)D(z), where T (k) is the linear

transfer function.iii We calculate different curves assuming the same values of Ωm,0, ΩΛ,0,

h and σ8 but different values of ns, as indicated in the legend.

The top-left panel of Fig. 2.5 shows that P (k) retains the primordial shape for large-

scale fluctuations, P (k) ∝ kns at k < keq, with keq ∼ 0.06(Ωm,0h2)Mpc−1. On small

scales, the shape of P (k) changes and the slope is reduced to P (k) ∝ kns−4 at k >

keq. This occurs because small-scale fluctuations enter the horizon during the radiation

dominated era, and their growth is suppressed due to radiation pressure. The top-right

panel of Fig. 2.5 shows that when we decrease the power index from 1 to −1, we imprint

more power on large scales, and as a result σns=−1(M) is larger than σns=1(M) at high

halo masses (> 1014 M⊙), but is smaller at low halo masses (< 1014 M⊙).

In §2.2.2 we defined the halo formation redshift, z̃f , as the redshift where M(z̃f) = M0/q.

We evaluate the halo MAH at z̃f and find that z̃f ∼ β−1 ln q−1, where for simplicity we

approximated M(z) ∼ eβz (valid at early times). We then assume that q is roughly

constant with halo mass, and obtain z̃f ∼ f−1(M0). Since f(M0) ∼ σ−1(M0), we find

that the larger σ(M0), the larger z̃f , meaning that high-mass halos form earlier in a

universe with a smaller power index, while low-mass halos form later. This can be

seen in the bottom panels of Fig. 2.5 which show halo MAHs assuming ns = −1 (blue

long-dashed lines), 0 (blue short-dashed lines), 1 (green solid lines) and 2 (blue solid

lines). As expected, the left-bottom panel shows that halos reached 1012 M⊙ quite

recently (at z = 0.54) in a universe with ns = −1, whereas halos reached the same mass

earlier (at z = 3.1) in a universe with ns = 1. The opposite behavior is seen in the

right-bottom panel for high-mass halos.

(ii) Mass variance on an 8h−1Mpc scale. σ8 is used to normalize the theoretical

power spectrum by requiring that σ(R) = 0.9 at R = 8 h−1Mpc. Since a change in σ8

only changes the normalization of P (k), σ(M) is shifted in proportion to the change in

normalization. We then find that if we increase σ8, σ(M) increases for all halo masses

and the exponent β = −f(M0)z increases, as a result M(z) flattens and halos form earlier.

(iii) Hubble parameter. The Hubble parameter h gives the rate of expansion of the

Universe. If we increase the rate of expansion, we not only increase the scale of upturn

iiiWe calculated T (k) using the fitting relations from Eisenstein & Hu (1998) assuming no neutrinos.
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Figure 2.5: Linear power spectrum (top-left panel), mass variance (top-right panel) and MAH of
halos with masses M0 = 1013 M⊙ (bottom-left panel) and M0 = 1017 M⊙ (bottom-
right panel), calculated assuming the same value of the cosmological parameters
Ωm,0, ΩΛ,0, h and σ8, but different ns, as indicated in the legend.

Figure 2.6: Mass variance (left-panel) and halo MAHs (right-panel) calculated assuming same
value of the cosmological parameters Ωm,0, ΩΛ,0, ns and σ8, but different h, as
indicated in the legend. In the right-panel M∗ denotes the halo mass at z = 0
given by the intersection between grey dot line and the mass variance shown in the
left-panel.
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in P (k) (keq ∝ h2), but also the normalization. As a result, σ(M) increases in low-mass

halos and decreases in high-mass halos, as shown in the left-panel of Fig. 2.6. In order

to analyse the change in M(z) from universes with different expansion rate, we compare

MAH of halos with the same value of σ(M). We select those that intersect the dotted

grey line in the left-panel of Fig. 2.6. The right-panel of the figure shows that the halo

MAH changes with h, the higher h, the less steep M(z). To understand this we analyse

the parameter α (which depends on h) in the M(z) model. If we again use z̃f and the

MAH model from eq. (2.20), we obtain

f−1(M0) ln q−1 = ln(1 + z̃f)[1.686(2/π)1/2dD/dz|z=0 + 1] − z̃f . (2.26)

Assuming that z̃f is small, and approximating ln(1 + z̃f) ≈ z̃f , we find that

z̃f ∝ (dD/dz|z=0)−1. As a result, z̃f ∝ h, from which we conclude that larger val-

ues of h lead to faster growth of structure (larger D(z)), and the earlier formation of

dark matter halos.

(iv) Density parameter of dark energy. In §2.2.1 we show that in the low-redshift

regime the halo MAH is mostly dominated by a power-law function of redshift, because

the growth of the density perturbations is halted in the dark energy dominated era due

to the accelerated expansion of the Universe. In this analysis we expand this explanation

by comparing halo MAHs calculated under different ΩΛ,0 values.

The left-panel of Fig. 2.7 shows the growth factor calculated assuming ns = 1, σ8 =

0.9, h = 0.7, Ωm,0 = 1 − ΩΛ,0 (flat) and ΩΛ,0 ranging from 0.1 to 0.9. In a universe

with ΩΛ,0 = 0.9, the dark energy dominated era begins at zΩΛ
≈ 1.08, but in the case

ΩΛ,0 = 0.1, zΩΛ
≈ −0.51, meaning that the dark energy dominated era has not yet begun.

We therefore find that while growth rate factor declines at z ≤ 1.08 when ΩΛ,0 = 0.9, it

grows in proportion to the scale factor (D(z) ∝ a(z)) at all redshifts when ΩΛ,0 = 0.1.

In order to analyse the change in M(z) under different values of ΩΛ,0, we compare

MAHs from halos at the non-linear mass scale M∗, so that σ(M∗, ΩΛ,0) = 1.686. σ(M) is

the main parameter governing the abundance of halos (see eq. 1.26 in §1.2.1, and see also

Press & Schechter 1974; Sheth & Lemson 1999; Jenkins et al. 2001; Reed et al. 2007). In

universes with different matter content (since changing ΩΛ,0 changes Ωm,0), halos with the

same σ(M∗, ΩΛ,0) have similar (or ‘equivalent’) abundance. Then, to compare MAHs of

halos that are ‘equivalent’, we select halos with ‘equivalent’ abundance (a technique often

employed for calculating galaxy mass evolution, e.g. van Dokkum et al. 2013; Behroozi

et al. 2013).

The right-panel of Fig. 2.7 shows that when ΩΛ,0 = 0.1, M(z) is characterized by

an exponential growth at all z (blue long-dashed line), and when ΩΛ,0 = 0.9, M(z) is

dominated by a power-law growth at earlier times (blue solid line).
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Figure 2.7: Growth rate factor (left-panel) and halo MAHs (right panels) calculated assuming
ns = 1, σ8 = 0.9, h = 0.7 and Ωm,0 = 1 − ΩΛ,0 (flat).

(v) Density parameter of matter. To analyse how the matter content in the

universe changes the halo MAH, we assume ns = 1, σ8 = 0.9, h = 0.7, ΩΛ,0 = 0 (the

same result holds for ΩΛ,0 > 0 in a open/close universe) and Ωm,0 ranging from 0.1 to 10.

We find that increasing Ωm,0 increases σ(M) (at fixed halo mass), and that as a result

the halo MAH flattens and halos collapse earlier.

2.4 Summary

In this chapter we have demonstrated how halo mass histories are determined by the

initial power spectrum of density fluctuations and the growth factor. We have found

that the halo mass history can be well described by an exponential, M(z) ∼ eβz (as

suggested by Wechsler et al. 2002) in the high-redshift regime, but that the accretion

slows to a power law at low redshift, M(z) ∼ (1 + z)α, because the growth of density

perturbations is halted in the dark energy dominated era due to the accelerated expansion

of the Universe.

We have derived an analytic mass history model based on EPS formalism, in which

the parameters α and β are related to the power spectrum and depend on cosmology.

We have found very good agreement between the halo mass histories predicted by our

analytic model and published fits to simulation results. The reader may find a step-

by-step description on how to implement the model in Appendix A, §A.1, as well as

numerical routines onlineiv.

In the following chapter we explore the relation between the structure of the inner

dark matter halo and halo mass history using a suite of cosmological simulations. We

ivAvailable at https://bitbucket.org/astroduff/commah.

https://bitbucket.org/astroduff/commah
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derive a semi-analytic model for halo mass history that combines analytic relations for

the concentration and formation time with fits to simulations, to relate halo structure

to the mass accretion history. In Chapter 4 we combine the semi-analytic model of halo

mass history from Chapter 3 with the analytic model described in this chapter to predict

the concentration-mass relation and its dependence on cosmology.
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On the power spectrum,

halo accretion history and

density profile relation
This chapter explores the relation between the structure and mass accretion histories of dark matter

halos.

Halo formation can be described as an ‘inside out’ process, where a strongly bound

core collapses, followed by the gradual addition of material at the cosmological accretion

rate. Through this process, halos acquire a nearly universal density profile that can be

described by the NFW profile (Navarro et al. 1996, see also Chapter 1, §1.2.3). It is

then generally believed that the halo MAH determines the ‘universal’ density profile. In

this chapter we explore the relation between halo MAH and density profile. Using a suit

of cosmological simulations, we find that the formation time, defined as the time when

the virial mass of the main progenitor equals the mass enclosed within the scale radius,

correlates strongly with concentration (as also found by Ludlow et al. 2013). We derive a

semi-analytic model for halo MAH, that has the functional form M(z) = M0(1 + z)αeβz,

and the parameters α and β depend on the halo concentration. We then combine this

model for the halo MAH with the analytic model derived in Chapter 2 and establish

the physical link between halo concentration and the initial density perturbation field.

Finally, we provide fitting formulas for the halo MAH, a step-by-step description on how

to implement the semi-analytic MAH model in Appendix A, as well as numerical routines

onlinei.

iAvailable at http://astro.physics.unimelb.edu.au/Research/Public-Data-Releases/COMMAH

http://astro.physics.unimelb.edu.au/Research/Public-Data-Releases/COMMAH
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3.1 Introduction

To date, the origin of the universal shape of the halo density profile is still a topic of

open debate. In the last decade many different types of arguments have been suggested.

One common explanation is that the density profile results from a relaxation mechanism

that produces equilibrium and is largely independent of the initial conditions and merger

history (Navarro et al. 1997). On the other hand, it has also been suggested that the

shape of the halo profile may be related to the shape of the matter power spectrum

(Nusser & Sheth 1999). But more recently, Wang & Abel (2007) used simulations of Hot

Dark Matter cosmologies to show that halos forming at the cutoff scale of the power

spectrum have radial profiles that are fit by the NFW form just as well as CDM halos

are at comparable resolution.

In addition to these efforts, many works have shown that the halo MAH plays an

important rol in determining the halo density profile (e.g. Bullock et al. 2001; Eke et al.

2001; Wechsler et al. 2002; Zhao et al. 2003; Tasitsiomi et al. 2004; Ludlow et al. 2013).

The argument is as follows. During hierarchical growth, halos form through mergers with

smaller structures and accretion from the intergalactic medium. Most mergers are minor

(with smaller satellite halos) and do not alter the structure of the inner halo. Major

mergers (mergers between halos of comparable mass) can bring material to the centre,

but they are found not to play a pivotal role in modifying the internal mass distribution

(Wang & Abel 2007). Halo formation can therefore be described as an inside out process,

where a strongly bound core collapses, producing an inner profile of ρ(r) ∝ r−1, followed

by the gradual addition of material at the cosmological accretion rate, producing an

outer profile of ρ(r) ∝ r−3 (Lu et al. 2006). The point in time when the core collapses

determines the scale radius, r−2 (radius where ρ(r−2) ∝ r−2), and so the concentration

of the dark matter halo. Low-mass halos are generally more concentrated because they

assembled earlier, when the Universe was denser, than high-mass halos.

Therefore, since NFW profile is determined by the halo MAH, it is then expected that

halos should also follow a universal MAH profile (Dekel et al. 2003; Manrique et al. 2003;

Sheth & Tormen 2004; Dalal et al. 2010; Salvador-Solé et al. 2012; Giocoli et al. 2012).

This universal accretion history was recently illustrated by Ludlow et al. (2013), who

showed that the halo MAHs, if scaled to certain values, follow the NFW profile. This

was done by comparing the mass accretion history, expressed in terms of the critical

density of the Universe, M(ρcrit(z)), with the NFW density profile, expressed in units

of enclosed mass and mean density within r, M(〈ρ〉(< r)) at z = 0, in a mass-density

plane.

In this chapter we aim to provide a model that links the halo MAH with the halo

concentration, a parameter that fully describes the internal structure of dark matter halos.
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By doing so, we will gain insight into the origin of the NFW profile and its connection

with the halo MAH. We also aim to find a physical explanation for the known correlation

between the linear rms fluctuation of the density field, σ, and halo concentration.

This chapter is organized as follows. We briefly introduce the simulations used in this

work in §3.2, where we explain how we calculated the merger history trees and discuss

the necessary numerical convergence conditions (readers unfamiliar with numerical sim-

ulations are encouraged to first read §1.2.2 from Chapter 1). Then we provide a model

for the halo MAH, which we refer to as the semi-analytic model. This semi-analytic

model is described in §3.3, along with an analysis of the formation time definition. For

this model we use the empirical McBride et al. (2009) formula. This functional form

was motivated by the analytical analysis from Chapter 2, but the correlation between

its two-parameters (α and β) is calibrated using numerical simulations. As a result, the

semi-analytic model combines analytic relations with fits to simulations, to relate halo

structure to the MAH. In §3.4.1 we show how the semi-analytic model for the halo MAH

depends on cosmology and the adopted definition for halo mass. In §3.5 we provide a

detailed comparison between the semi-analytic halo MAH model and the analytic model

presented in Chapter 2. The parameters in this analytic model depend on the linear

power spectrum and halo mass, whereas in the semi-analytic model the parameters de-

pend on concentration and halo mass. We therefore combine the two models to establish

the physical relation between the linear power spectrum and halo concentration. We ex-

pand on this relation in the following chapter (Chapter 4), where we predict the evolution

of the concentration-mass relation and its dependence on cosmology. Finally, we provide

a summary of formulae and discuss our main findings in §3.7.

3.2 Simulations

In this work we use a set of cosmological hydrodynamical simulations (the REF model)

along with a set of dark matter only (DMONLY) simulations from the OWLS project

(Schaye et al. 2010). These simulations were run with an extended version of the N-

Body Tree-PM, smoothed particle hydrodynamics (SPH) code Gadget3 (last described

in Springel et al. 2005). In order to assess the effects of the finite resolution and box

size on our results, most simulations were run using the same physical model (DMONLY

or REF) but different box sizes (ranging from 25 h−1Mpc to 400 h−1Mpc) and particle

numbers (ranging from 1283 to 5123). The main numerical parameters of the runs are

listed in Table 1. The simulation names contain strings of the form LxxxNyyy, where xxx

is the simulation box size in comoving h−1Mpc, and yyy is the cube root of the number

of particles per species (dark matter or baryonic). For more details on the simulations

we refer the reader to the Introduction §1.2.2.

To investigate the dependence on the adopted cosmological parameters, we include an
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Table 3.1: List of simulations. From left-to-right the columns show: simulation identifier; co-
moving box size; number of dark matter particles (there are equally many bary-
onic particles); initial baryonic particle mass; dark matter particle mass; comoving
(Plummer-equivalent) gravitational softening; maximum physical softening; final red-
shift.

Simulation L N mb mdm εcom εprop zend

(h−1Mpc) (h−1M ⊙) (h−1M ⊙) (h−1kpc) (h−1kpc)

Reference
model (REF)

L100N512 100 5123 8.7 × 107 4.1 × 108 7.81 2.00 0
L100N256 100 2563 6.9 × 108 3.2 × 109 15.62 4.00 0
L100N128 100 1283 5.5 × 109 2.6 × 1010 31.25 8.00 0
L050N512 50 5123 1.1 × 107 5.1 × 107 3.91 1.00 0
L025N512 25 5123 1.4 × 106 6.3 × 106 1.95 0.50 2
L025N256 25 2563 1.1 × 107 5.1 × 107 3.91 1.00 2
L025N128 25 1283 8.7 × 107 4.1 × 108 7.81 2.00 2

Dark matter
only model
(DMONLY)

L400N512 400 5123 − 3.4 × 1010 31.25 8.00 0
L200N512 200 5123 − 3.2 × 109 15.62 4.00 0
L100N512 100 5123 − 5.3 × 108 7.81 2.00 0
L050N512 50 5123 − 6.1 × 107 3.91 1.00 0
L025N512 25 5123 − 8.3 × 106 2.00 0.50 0

extra set of five dark matter only simulations (100 h−1Mpc box size and 5123 dark matter

particles) which assume values for the cosmological parameters derived from the different

releases of Wilkinson Microwave Anisotropy Probe (WMAP) and the Planck mission.

Table 3.2 lists the sets of cosmological parameters adopted in the different simulations.

The first step towards studying the mass assembly history of halos is to identify gravita-

tionally bound structures and build halo merger trees. We begin by selecting the largest

halo in each FoF group (Davis et al. 1985) (i.e. the main subhalo of FoF groups that is

not embedded inside larger halos). Halo virial masses and radii are determined using a

spherical overdensity routine within the SUBFIND algorithm (Springel et al. 2001; Dolag

et al. 2009) centred on the main subhalo of FoF halos. Therefore, we define halo masses

as all matter within the radius r200 for which the mean internal density is 200 times

the critical density. Throughout this work, we study the accretion history of the largest

halos in each FoF group. Subhalos, defined as bound structures that reside within the

virial radius of the largest ‘host’ halo, show distinct mass histories. The structures of

subhalos are strongly affected by the potential of their host halos, as seen for example in

the cessation of mass accretion onto subhalos residing in dense environments (see Wang

et al. 2009 or Lacerna & Padilla 2011). Consequently, the masses of subhalos do not

follow the mass history of their host halos.
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Figure 3.1: Median halo MAH as a function of redshift from simulations DMONLY (left panel)
and REF (right panel) for halos in eleven and seven different mass bins, respectively.
The curves show the median value, and the 1σ error bars are determined by boot-
strap resampling the halos from the merger tree at a given output redshift. The
different colour lines show the MAHs of halos from different simulations. We find
that a necessary condition for a halo to be defined, and mass histories to converge,
is that halos should have a minimum of 300 dark matter particles. The horizontal
dashed dotted lines show the 300 × mdm limit for the simulation that matches the
colour, where mdm is the respective dark matter particle mass. When following a
merger tree from a given halo sample, some halos are discarded when unresolved.
This introduces a bias and so an upturn in the median mass history. Therefore, mass
history curves are stopped once fewer than 50% of the original sample of halos are
considered. Simulations in the REF model with 25 h−1Mpc comoving box size have
a final redshift of z = 2, therefore the halos mass histories begin at this redshift.
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Halo MAHs are obtained from the simulation outputs by building halo merger trees.

The standard procedure to build a halo merger tree is to link each progenitor halo with a

unique ‘descendant’ halo in the subsequent output (see e.g. Fakhouri et al. 2010). In this

work however we do not build halo merger trees using the same method, instead we build

halo mass histories, we identify the main branches of the halo merger trees and compute

the halo mass growth.

We define the halo MAH as the mass of the most massive halo (main progenitor)

along the main branch of the merger tree. The merger trees of the largest halos are

then built as follows. First, at each output redshift (snapshot), we select ‘resolved’ halos

that contain more than 300 dark matter particles. We refer to these resolved halos as

descendants. We then link each descendant with a unique ‘progenitor’ at the previous

output redshift. This is nontrivial due to halo fragmentation: subhalos of a progenitor

halo may have descendants that reside in more than one halo. The fragmentation can be

spurious or due to a physical unbinding event. To correct this, we link the descendant to

the progenitor that contains the majority of the descendant’s 25 most bound dark matter

particles. Therefore, the main progenitor of a given dark matter halo is found by tracing

backwards in time to the most massive halo along the main branch of its merger tree. The

different mass histories are calculated by following the merger trees of a given sample

of halos. At each redshift the mass histories are computed by calculating the median

mass value, determined by bootstrap resampling the halos, from the merger tree. Along

with the median value, the 1σ confidence interval is recorded. This is the traditional

procedure to compute halo MAHs. Some studies define the halo MAH as the descendant

most massive progenitor (e.g. van den Bosch 2002b; McBride et al. 2009; Fakhouri et al.

2010; Behroozi et al. 2013), or similarly, as the progenitor that contributes most to its

mass (e.g. Wechsler et al. 2002; Zhao et al. 2003).

While analysing the merger trees from the simulations, we look for a numerical reso-

lution criterion under which MAHs converge numerically. We begin by investigating the

minimum number of particles halos must contain so that the merger trees lead to accurate

numerical convergence. We find a necessary minimum limit of 300 dark matter particles,

which corresponds to a minimum dark matter halo mass of Mhalo ∼ 2.3 × 1011M ⊙ in the

100 h−1Mpc box, Mhalo ∼ 2.6×1010M ⊙ in the 50 h−1Mpc box, and Mhalo ∼ 3.4×109M ⊙

in the 25 h−1Mpc box.

In a merger tree, when a progenitor halo contains less than 300 dark matter particles,

it is considered unresolved and discarded from the analysis. As a result, the number of

halos in the sample that contribute to the median value of the mass history decreases

with increasing redshift. Removing unresolved halos from the merger tree can introduce

a bias. When the number of halos that are discarded drops to more than 50% of the

original sample, a spurious upturn in the median mass history occurs. To avoid this bias,
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Table 3.2: Cosmological parameters.

Simulation Ωm,0 ΩΛ,0 h σ8 ns

DMONLY−WMAP1 0.25 0.75 0.73 0.90 1.000
DMONLY−WMAP3 0.238 0.762 0.73 0.74 0.951
DMONLY−WMAP5 0.258 0.742 0.72 0.796 0.963
DMONLY−WMAP9 0.282 0.718 0.70 0.817 0.964
DMONLY−Planck1 0.317 0.683 0.67 0.834 0.962

the median MAH curve is only built out to the redshift at which less than 50% of the

original number of halos contributes to the median mass value.

Fig. 3.1 shows the effects of changing the resolution for the dark matter only and

reference simulations. We first vary the box size while keeping the number of particles

fixed (left panel). Then we vary the number of particles while keeping the box size

fixed (right panel). The left panel (right panel) of Fig. 3.1 shows the mass history as

a function of redshift for halos in eleven (seven) different mass bins for the DMONLY

(REF) simulation. All halo masses are binned in equally spaced logarithmic bins of size

∆ log10 M = 0.5. The MAHs are computed by calculating the median value of the halo

masses from the merger tree at a given output redshift, the error bars correspond to 1σ

confidence intervals. The different coloured lines indicate the different simulations from

which the halo mass histories were calculated. The horizontal dash-dotted lines in the

panels show the 300 × mdm limit for the simulation that matches the colour. Halos in

the simulation with masses lower than this value are unresolved, and hence their MAHs

are not considered. The MAHs from halos whose main progenitors have masses lower

than 1012M ⊙ at z = 0 were computed from simulations with 50 h−1Mpc and 25 h−1Mpc

comoving box sizes. In the right panel, the mass history curves obtained from the REF

simulation with a 25 h−1Mpc comoving box size have a final redshift of z = 2. Therefore,

these halo MAHs begin at this redshift.

3.3 Semi-analytic model for the halo mass history

In the following subsections we study dark matter halo properties and provide a semi-

analytic model that relates halo structure to the MAH. We begin with the NFW density

profile and derive an analytic expression for the mean inner density, 〈ρ〉(< r−2), within

the scale radius, r−2. We then define the formation redshift, and use the simulations

to find the relation between 〈ρ〉(< r−2) and the critical density of the universe at the

formation redshift. We discuss the universality of the MAH curve and show how we

can obtain a semi-analytic model for the MAH that depends on only one parameter (as

expected from our EPS analysis presented in Chater 2). We then calibrate this single

parameter fit using our numerical simulations. Finally, we show how the semi-analytic

model for halo MAH depends on cosmology and halo mass definition.
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3.3.1 Density profile

An important property of a population of halos is their spherically averaged density profile.

Based on N -body simulations, Navarro et al. (1997) found that the density profiles of

CDM halos can be approximated by a two parameter profile,

ρ(r) =
ρcritδc

(r/r−2)(1 + r/r−2)2
, (3.1)

where r is the radius, r−2 is the characteristic radius at which the logarithmic density

slope is −2, ρcrit(z) = 3H2(z)/8πG is the critical density of the universe and δc is a

dimensionless parameter related to the concentration c by

δc =
200

3

c3

[ln(1 + c) − c/(1 + c)]
, (3.2)

which applies at fixed virial mass and where c is defined as c = r200/r−2, and r200 is

the virial radius. A halo is often defined so that the mean density 〈ρ〉(< r) within the

halo virial radius r∆ is a factor ∆ times the critical density of the universe at redshift z.

Unfortunately, not all authors adopt the same definition, and readers should be aware

of the difference in halo formation history and internal structure when different mass

definitions are adopted (see Duffy et al. 2008; Diemer et al. 2013). We explore this in

§3.4.1.2 to which the reader is referred to for further details. Throughout this work we

use ∆ = 200. We denote Mz ≡ M200(z) as the halo mass as a function of redshift,

Mr ≡ M(< r) as the halo mass profile within radius r at z = 0, r200 as the virial radius

at z = 0 and c as the concentration at z = 0. Note that the halo mass is defined as all

matter within the radius r200 (see Table 3.3 for reference).

The NFW profile is characterized by a logarithmic slope that steepens gradually from

the centre outwards, and can be fully specified by the concentration parameter and halo

mass. Simulations have shown that these two parameters are correlated, with the average

concentration of a halo being a weakly decreasing function of mass (e.g. NFW; Bullock

et al. 2001; Eke et al. 2001; Shaw et al. 2006; Neto et al. 2007; Duffy et al. 2008; Macciò

et al. 2008; Dutton & Macciò 2014; Diemer & Kravtsov 2015). Therefore, the NFW

density profile can be described by a single free parameter, the concentration, which can

be related to virial mass. The following relation was found by Duffy et al. (2008) from a

large set of N−body simulations with the WMAP5 cosmology,

c = 6.67(M200/2 × 1012h−1M ⊙)−0.092, (3.3)

for halos in equilibrium (relaxed). Throughout this thesis the c − M relation refers to

the relation between concentration and halo mass.
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Table 3.3: Notation reference. Unless specified otherwise, quantities are evaluated at z = 0.

Notation Definition

M200 Mr(r200), total halo mass
r200 Virial radius
r−2 NFW scale radius
c NFW concentration
Mz M(z), total halo mass at redshift z
Mr(r) M(< r), mass enclosed within r
x r/r200

〈ρ〉(< r−2) Mean density within r−2

Mr(r−2) M(< r−2), enclosed mass within r−2

z−2 Formation redshift, when Mz equals Mr(r−2)
ρcrit,0 Critical density today
ρcrit(z) Critical density at redshift z
ρm(z) Mean background density at redshift z

The NFW profile can be expressed in terms of the mean internal density

〈ρ〉(< r) =
Mr(r)

(4π/3)r3
=

200

x3

Y (cx)

Y (c)
ρcrit, (3.4)

where x is defined as x = r/r200 and Y (u) = ln(1+u)−u/(1+u). From this last equation

we can verify that at r = r200, x = 1 and 〈ρ〉(< r200) = 200ρcrit.

Evaluating 〈ρ〉(< r) at r = r−2, we obtain

〈ρ〉(< r−2) =
Mr(r−2)

(4π/3)r3
−2

= 200c3 Y (1)

Y (c)
ρcrit. (3.5)

From this last expression we see that for a fixed redshift the mean inner density 〈ρ〉(< r−2)

can be written in terms of c. By substituting eq. (3.3) into (3.5), we can obtain 〈ρ〉(< r−2)

as a function of virial mass. Finally, we can compute the mass enclosed within r−2. From

eq. (3.5) we obtain

Mr(r−2) = M200
Y (1)

Y (c)
, (3.6)

where we used M200 = (4π/3)r3
200200ρcrit.

Although the NFW profile is widely used and generally describes halo density profiles

with high accuracy, it is worth noting that high resolution numerical simulations have

shown that the spherically averaged density profiles of dark matter halos have small

but systematic deviations from the NFW form (e.g. Navarro et al. 2004; Hayashi &

White 2008; Navarro et al. 2010; Ludlow et al. 2010; Diemer & Kravtsov 2014). While

there is no clear understanding of what breaks the structural similarity among halos, an

alternative parametrization is sometimes used (the Einasto profile), which assumes the
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logarithmic slope to be a simple power law of radius, d ln ρ/d ln r ∝ (r/r−2)α (Einasto

1965). Recently, Ludlow et al. (2013) investigated the relation between the accretion

history and mass profile of cold dark matter halos. They found that halos whose mass

profiles deviate from NFW and are better approximated by Einasto profiles also have

accretion histories that deviate from the NFW shape in a similar way. However, they

found the residuals from the systematic deviations from the NFW shape to be smaller

than 10%. We therefore only consider the NFW halo density profile in this work.

3.3.2 Formation redshift

Navarro et al. (1997) showed that the characteristic overdensity (δc) is closely related

to formation time (zf), which they defined as the time when half the mass of the main

progenitor was first contained in progenitors larger than some fraction f of the mass of

the halo at z = 0. They found that the ‘natural’ relation δc ∝ Ωm,0(1+zf)
3 describes how

the overdensity of halos varies with their formation redshift. Subsequent investigations

have used N-body simulations and empirical models to explore the relation between

concentration and formation history in more detail (Wechsler et al. 2002; Zhao et al.

2003, 2009). A good definition of formation time that relates concentration to halo mass

history was found to be the time when the main progenitor switches from a period of

fast growth to one of slow growth. This is based on the observation that halos that have

experienced a recent major merger typically have relatively low concentrations, while

halos that have experienced a longer phase of relatively quiescent growth have larger

concentrations. Moreover, Zhao et al. (2009) argue that halo concentration can be very

well determined at the time the main progenitor of the halo has 4% of its final mass.

The various formation time definitions each provide accurate fits to the simulations on

which they are based and, at a given halo mass, show reasonably small scatter. However,

our goal is to adopt a formation time definition that has a natural justification without

invoking arbitrary mass fractions. To this end, we go back to the idea that halos are

formed inside out, and consider the formation time to be defined as the time when the

initial bound core forms. We follow Ludlow et al. (2013) and define the formation redshift

as the time at which the mass of the main progenitor equals the mass enclosed within

the scale radius at z = 0, yielding

z−2 = z[Mz = Mr(r−2)]. (3.7)

From now on we denote the formation redshift by z−2. Interestingly, Ludlow et al. (2013)

found that at this formation redshift, the critical density of the universe is directly pro-

portional to the mean density within the scale radius of halos at z = 0 : ρcrit(z−2) ∝
〈ρ〉(< r−2). A possible interpretation of this relation is that the central structure of a
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dark matter halo (contained within r−2) is established through collapse and later accre-

tion and mergers increase the mass and size of the halo without adding much material

to its inner regions, thus increasing the halo virial radius while leaving the scale radius

and its inner density (〈ρ〉(< r−2)) almost unchanged (Huss et al. 1999; Wang & Abel

2007).

3.3.3 Relation between halo formation time and concentration

We now study the relation between ρcrit(z−2) and 〈ρ〉(< r−2) using a set of DMONLY

cosmological simulations from the OWLS project that adopt the WMAP-5 cosmology.

We begin by considering two samples of halos. Our complete sample contains all halos

that satisfy our resolution criteria while our ‘relaxed’ sample retains only those halos

for which the separation between the most bound particle and the centre of mass of the

Friends-of-Friends (FoF) halo is smaller than 0.07Rvir, where Rvir is the radius for which

the mean internal density is ∆ (as given by Bryan & Norman 1998) times the critical

density. Neto et al. (2007) found that this simple criterion resulted in the removal of the

vast majority of unrelaxed halos and as such we do not use their additional criteria. At

z = 0, our complete sample contains 2831 halos, while our relaxed sample is reduced to

2387 (84%).

To compute the mean inner density within the scale radius, 〈ρ〉(< r−2), we need to fit

the NFW density profile to each individual halo. We begin by fitting NFW profiles to

all halos at z = 0 that contain at least 104 dark matter particles within the virial radius.

For each halo, all particles in the range −1.25 ≤ log10(r/r200) ≤ 0, where r200 is the virial

radius, are binned radially in equally spaced logarithmic bins of size ∆ log10 r = 0.078.

The density profile is then fit to these bins by performing a least square minimization of

the difference between the logarithmic densities of the model and the data, using equal

weighting. The corresponding mean enclosed mass, Mr(r−2), and mean inner density

at r−2, 〈ρ〉(< r−2), are found by interpolating along the cumulative mass and density

profiles (measured while fitting the NFW profile) from r = 0 to r−2 = r200/c, where

c is the concentration from the NFW fit. Then we follow the mass history of these

halos through the snapshots, and interpolate to determine the redshift z−2 at which

Mz = Mr(r−2).

We perform a least-square minimization of the quantity ∆2 = 1
N

∑N
i=1[〈ρi〉(ρcrit,i) −

f(ρcrit,i, A)], to obtain the constant of proportionality, A. We find 〈ρ〉(< r−2) =

(900 ± 50)ρcrit(z−2) for the relaxed sample, and 〈ρ〉(< r−2) = (854 ± 47)ρcrit(z−2) for

the complete sample. The 1σ error was obtained from the least squares fit. For compari-

son, Ludlow et al. (2014) found a constant value of 853 for their relaxed sample of halos

and the WMAP-1 cosmology. Fig. 3.2 shows the relation between the mean inner density

at z = 0 and the critical density of the universe at redshift z−2 for various DMONLY
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Figure 3.2: Relation between the mean density within the NFW scale radius at z = 0 and the
critical density of the universe at the halo formation redshift, z−2, for DMONLY
simulations from the OWLS project. The simulations assume the WMAP-5 cos-
mological parameters and have box sizes of 400h−1Mpc, 200h−1Mpc, 100h−1Mpc,
50h−1Mpc and 25h−1Mpc. The black solid line indicates the relation shown in
eq. (3.8), which only depends on cosmology through the mass-concentration rela-
tion. The black (red) star symbols show the mean values of the complete (relaxed)
sample in logarithmic mass bins of width δ log10 M = 0.2. The black dashed and
solid lines show the relations found by fitting the data of the complete and relaxed
samples, respectively. The filled circles correspond to values of individual halos and
are coloured by mass according to the colour bar at the top of the plot.

simulations. Each dot in this panel corresponds to an individual halo from the com-

plete sample in the DMONLY−WMAP5 simulations that have box sizes of 400h−1Mpc,

200h−1Mpc, 100h−1Mpc, 50h−1Mpc and 25h−1Mpc. The 〈ρ〉(< r−2)-ρcrit(z−2) values

are coloured by mass according to the colour bar at the top of the plot. The black (red)

star symbols show the mean values of the complete (relaxed) sample in logarithmic mass

bins of width δ log10 M = 0.2. As expected when unrelaxed halos are discarded (e.g.

Duffy et al. 2008), the relaxed sample contains on average slightly higher concentrations

(by a factor of 1.16) and so higher formation times (by a factor of 1.1).

In Fig. 3.2 the best-fit to the data points from the relaxed sample is shown by the solid

line, while the dashed line is the fit to the complete sample. The ρcrit(z−2) − 〈ρ〉(< r−2)

correlation clearly shows that halos that collapsed earlier have denser cores at z = 0.

Using the mean inner density-critical density relation for the relaxed sample,
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Figure 3.3: Relation between formation redshift and z = 0 halo mass, M200 (left panel), and
between formation redshift, z−2, and halo concentration, c (right panel). The dif-
ferent symbols correspond to the median values of the relaxed sample and the error
bars to 1σ confidence limits. The solid line in the right panel is not a fit but a
prediction of the z−2 − c relation for relaxed halos given by eq. (3.9). Similarly, the
dashed line is the prediction for the complete sample of halos, assuming a constant
of proportionality between 〈ρ〉(< r−2) and ρcrit of 854, rather than the value of 900
used for the relaxed sample. The grey area shows the scatter in z−2 plotted in Fig.
3.7 (right panel). Similarly, the solid line in the left panel is a prediction of the
z−2 − M200 relation given by eqs. (3.9) and (3.3). The dashed line also shows the
z−2 − M200 relation assuming 〈ρ〉(< r−2) = 854ρcrit and the concentration-mass
relation calculated using the complete sample.

〈ρ〉(< r−2) = (900 ± 50)ρcrit(z−2). (3.8)

We replace 〈ρ〉(< r−2) by eq. (3.5) and calculate the dependence of formation redshift on

concentration,

(1 + z−2)3 =
200

900

c3

Ωm,0

Y (1)

Y (c)
− ΩΛ,0

Ωm,0
. (3.9)

This last expression is tested in Fig. 3.3 (left panel) where we plot the median forma-

tion redshift as a function of concentration using different symbols for different sets of

simulations from the OWLS project. The symbols correspond to the median values of

the relaxed sample, and the error bars indicate 1σ confidence limits. The grey solid line

shows the z−2 −c relation given by eq. (3.9), whereas the grey dashed line shows the same
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Figure 3.4: Mass histories of halos, obtained from different DMONLY−WMAP5 simulations,
as indicated by the colours. The bottom left legends indicate the halo mass range
at z = 0, selected from each simulation. For example, we selected halos between
109 −1011M ⊙ from the DMONLY−WMAP5−L025N512 simulation, divided them in
equally spaced logarithmic bins of size ∆ log10 M = 0.2, and calculated the median
mass histories. The different curves show the median mass history of the main
progenitors, normalized to the median enclosed mass of the main progenitors at
z = 0, Mr(r−2). The mass histories are plotted as a function of the mean background
density of the universe, scaled to the mean background density at z−2. The blue
dashed line is a fit of expression (3.17) to the different mass history curves. The
median value of the only adjustable parameter, γ, is indicated in the top-right part
of the plot.

relation assuming a constant of 854 instead of 900 (as obtained for the complete sample).

Similarly, using the Duffy et al. (2008) c − M relation we obtain the formation redshift

as a function of halo mass at z = 0 (right panel of Fig. 3.3). It is important to note that

the z−2 − c and z−2 − M relations are valid in the halo mass range 1011 − 1015 h−1M⊙, at

lower masses the c−M relation begins to deviate from power-laws (Ludlow et al. 2014).

In §3.4 we analyse the scatter in the formation time−mass relation and show that it

correlates with the scatter in the c − M relation. Thus concluding that the scatter in

formation time determines the scatter in the concentration. Also, we investigate how the

scatter in halo MAH drives the scatter in formation time.

3.3.4 The mass history

Fig. 3.4 shows the MAH of halos in different mass bins as a function of the mean

background density. The MAHs are scaled to Mr(r−2) and the mean background densities

are scaled to ρm(z−2) = ρcrit,0Ωm,0(1+z−2)3. The figure shows that all halo mass histories

look alike. This is in agreement with Ludlow et al. (2013), who found that the MAH,

expressed in terms of the critical density of the Universe, M(ρcrit(z)), resembles that of
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the enclosed NFW density profile, M(〈ρ〉(< r)). It is still not clear why the similarity

in the shapes between M(ρcrit(z)) and M(〈ρ〉(< r)), but it suggests that the physically

motivated form M(z) = M0(1 + z)αeβz, which is a result of rapid growth in the matter

dominated epoch followed by a slow growth in the dark energy epoch, produces the double

power-law of the NFW profile (see e.g. Lu et al. 2006). We use this feature to find a

functional form that describes this unique universal curve in order to obtain an empirical

expression for the mass accretion history at all redshifts and halo masses.

We are motivated by the EPS analysis of halo MAH presented in Chapter 2, where

we showed through analytic calculations that the halo MAH is described by a power-law

times an exponential,

M(z) = M0(1 + z)αeβz, (3.10)

and that the parameters α and β are connected via the power spectrum of density fluctua-

tions. In this chapter however, we aim to relate halo structure to the MAH. We therefore

first determine the correlation between the parameters α and β and concentration. To

this end, we first find the α−β relation that results from the formation redshift definition

discussed in the previous section. Thus, we evaluate the halo mass at z−2,

Mz(z−2) = Mr(r−2) = Mz(z = 0)(1 + z−2)αeβz−2 . (3.11)

Taking the natural logarithm, we obtain,

ln

(

Mr(r−2)

Mz(z = 0)

)

= α ln(1 + z−2) + βz−2, (3.12)

and hence

α =
ln
(

Mr(r−2)
Mz(z=0)

)

− βz−2

ln(1 + z−2)
. (3.13)

From this last equation we see that α can be written as a function of β, Mr(r−2), Mz(z =

0) and z−2. However, as Mr(r−2) is a function of concentration and virial mass (see

eq. 3.6), we can write α in terms of β, concentration and z−2,

α =
ln(Y (1)/Y (c)) − βz−2

ln(1 + z−2)
. (3.14)

The next step is to find an expression for β by fitting eq. (3.10) to all the data points
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plotted in Fig. 3.4. We then express M(z) (eq. 3.10) as a function of the mean background

density. To do this, we replace (1 + z) by (ρm(z)/ρcrit,0/Ωm,0)1/3 and divide both sides

of eq. (3.10) by Mr(r−2), yielding

Mz(z)

Mr(r−2)
=

Mz(z = 0)

Mr(r−2)

(

ρm(z)

Ωm,0ρcrit,0

)α/3

exp



β





(

ρm(z)

Ωm,0ρcrit,0

)1/3

− 1







 .

Multiplying both denominators and numerators by ρm(z−2), we get, after rearranging,

Mz(z)

Mr(r−2)
=

Mz(z = 0)

Mr(r−2)

(

ρm(z−2)

Ωm,0ρcrit,0

)α/3 (
ρm(z)

ρm(z−2)

)α/3

exp



β





(

ρm(z−2)

Ωm,0ρcrit,0

)1/3

− 1









× exp

(

γ

[

(

ρm(z)

ρm(z−2)

)1/3

− 1

])

, (3.15)

where, we have defined γ ≡ β(ρm(z−2)/Ωm,0/ρcrit,0)1/3 = β(1 + z−2). The term Mz(z=0)
Mr(r−2)

×
(

ρm(z−2)
Ωm,0ρcrit,0

)α/3
exp

(

β

[

(

ρm(z−2)
Ωm,0ρcrit,0

)1/3
− 1

])

in eq. (3.15) is equal to unity, which can

be seen by replacing ρm(z−2)/Ωm,0ρcrit,0 = (1 + z−2)3 and comparing with eq. (3.11).

Hence eq. (3.15) becomes

Mz(z)

Mr(r−2)
=

(

ρm(z)

ρm(z−2)

)α/3

exp

(

γ

[

(

ρm(z)

ρm(z−2)

)1/3

− 1

])

. (3.16)

Thus, based on eq. (3.16), the functional form to fit the MAHs from the simulations

can be written as

f(z̃, γ) = α(z−2, c, γ)z̃/3 + γ(ez̃/3 − 1), (3.17)

where f(z̃, γ) = ln
(

Mz(z)
Mr(r−2)

)

and z̃ = ln
[

ρm(z)
ρm(z−2)

]

. From eq. (3.14) we see that the

parameter α is a function of z−2, c and γ,

α =
ln(Y (1)/Y (c)) − γz−2/(1 + z−2)

ln(1 + z−2)
. (3.18)
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Therefore, γ is now the only adjustable parameter. We perform a χ2-like minimization

of the quantity

∆2 =
1

N

N
∑

i=1

[log10(Mz(zi)/Mr(r−2)) − f(z̃i, γ)]2, (3.19)

and find the value of γ that best fits all halo MAHs. The sum in the χ2-like min-

imization is over the N available simulation output redshifts at zi(i = 1, N), with

z̃i = ln
[

ρcrit,0Ωm,0(1+zi)
3

ρm(z−2)

]

.

Fig. 3.4 shows halo MAHs (with Mz(z) scaled to Mr(r−2)) for our complete halo

sample as a function of the mean background density [ρm(z) scaled to ρm(z−2)]. The

blue dashed line is the fit of expression (3.17) to all the mass history curves included in

the figure. Here, the only adjustable parameter is γ. We obtained γ = −3.01 ± 0.08,

yielding

β = −3(ρm(z−2)/Ωm,0/ρcrit,0)−1/3 = −3/(1 + z−2). (3.20)

Fig. 3.4 shows that the halo MAHs have a characteristic shape consisting of a rapid

growth at early times, followed by a slower growth at late times. The change from

rapid to slow accretion corresponds to the transition between the mass and dark energy

dominated eras (see Chapter 3), and depends on the parameter β in the exponential (as

can be seen from eq. 3.10). The dependence of β on the formation redshift is given in

eq. (3.20), which shows that a more recent formation time, and hence a larger halo mass,

results in a larger value of β, and so a steeper halo MAH curve. This last point can be

seen in Fig. 3.5 from the MAHs of halos in different mass bins (coloured lines shown in

the panels). The panel on the left shows the MAH curves from the DMONLY simulation

outputs (coloured lines in the background), and the MAHs predicted by eqs. (3.10), (3.14)

and (3.20) (red dashed lines). From these panels we see that, (i) the MAH formula works

remarkably well when compared with the simulation, and (ii) the larger the mass of a

halo at z = 0, the steeper the MAH curve at early times. In contrast, the MAH of

low-mass halos is essentially governed by the power law at late times.

The halo MAHs plotted in Fig. 3.5 come from the complete sample of halos (relaxed

and unrelaxed). We found no significant difference in mass growth when only relaxed

halos are considered. We therefore conclude that the fact that a halo is unrelaxed at a

particular redshift does not affect its halo MAH, provided the c − M relation fit from

the relaxed halo sample is used. This is an interesting result because while deriving the

semi-analytic model of halo mass history, we assumed that the halo density profile is

described by the NFW profile at all times. Therefore while the NFW is not a good fit for

the density profile of unrelaxed halos (Neto et al. 2007), our semi-analytic model (based

on NFW profiles) is a good fit all halos (relaxed and unrelaxed).
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Figure 3.5: MAHs of all halos from simulations DMONLY−WMAP5 (left panel) and REF
(right panel). Halo masses are binned in equally spaced logarithmic bins of size
∆ log10 M = 0.5. The mass histories are computed by calculating the median value
of the halo masses from the merger tree at a given output redshift, the error bars
correspond to 1σ. The different colour lines show the MAHs of halos from different
simulations as indicated in the legends, while the red dashed curves correspond to
the MAHs predicted by eqs. (3.10), (3.18) and (3.20).

The right panel of Fig. 3.5 shows halo MAHs from the REF hydrodynamical simula-

tions. We compute the halo mass as the total mass (gas and dark matter) within the virial

radius (r200). We find that the inclusion of baryons steepens the mass histories at high red-

shift, therefore the best description of M(z) is given by eqs. (3.10), (3.14), (3.20), and the

c − M relation from the complete sample of halos, c = 5.74(M/2 × 1012h−1M ⊙)−0.097.

3.3.5 The mass accretion rate

The accretion of gas and dark matter from the intergalactic medium is a fundamental

driver of both, the evolution of dark matter halos and the formation of galaxies within

them. For that reason, developing a theoretical model for the mass accretion rate is the

basis for analytic and semi-analytic models that study galaxy formation and evolution.

In this section we look for a suitable expression for the mean accretion rate of dark matter

halos. To achieve this, we take the derivative of the semi-analytic MAH model, M(z),

given by eq. (3.10) with respect to time and replace dz/dt by −H0[Ωm,0(1+z)5 +ΩΛ,0(1+

z)2]1/2, yielding
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dM

dt
= 71.6 M ⊙yr−1 M12h0.7[−α − β(1 + z)][Ωm,0(1 + z)3 + ΩΛ,0]1/2, (3.21)

where h0.7 = h/0.7, M12 = M/1012M ⊙ and α and β are given by eqs. (3.14) and (3.20),

respectively. As shown in the previous section, the parameters α and β depend on halo

mass (through the formation time dependence). We find that this mass dependence

is crucial for obtaining an accurate description for the mass history (as shown in Fig.

3.5). However, the factor of 2 (3) change for α (β) between halo masses of 108 and

1014M ⊙ is not significant when calculating the accretion rate. Therefore, we provide an

approximation for the mean mass accretion rate as a function of redshift and halo mass,

by averaging α and β over halo mass, yielding 〈α〉=0.24, 〈β〉=-0.75, and

〈dM

dt
〉 = 71.6 M ⊙yr−1 M12h0.7[−0.24 + 0.75(1 + z)][Ωm,0(1 + z)3 + ΩΛ,0]1/2.(3.22)

Fig. 3.6 (top panel) compares the median dark matter accretion rate for different

halo masses as a function of redshift (solid lines) to the mean accretion rate given by

eq. (3.22) (grey dashed lines). From the merger trees of the main halos, we compute the

mass growth rate of a halo of a given mass. We do this by following the main branch

of the tree and computing dM/dt = (M(z1) − M(z2))/∆t, where z1 < z2, M(z1) is the

descendant halo mass at time t and M(z2) is the most massive progenitor at time t − ∆t.

The median value of dM/dt for the complete set of resolved halos is then plotted for

different constant halo masses. We find very good agreement between the simulation

outputs and the analytic estimate given by eq. (3.22). As expected, the larger the halo

mass, the larger the dark matter accretion rate.

3.3.5.1 Baryonic accretion

Next, we estimate the gas accretion rate and compare our model with similar fitting

formulae proposed by Fakhouri et al. (2010) and Dekel & Krumholz (2013). The bottom

panel of Fig. 3.6 shows the gas accretion rate as a function redshift for a range of halo

masses (log10 M/M ⊙ = 11.2 − 12.8). The grey circles correspond to the gas accretion

rate measured in REF−L100N512. In this case we compute the total mass growth (M =

Mgas +MDM) from the merger trees, and then estimate the gas accretion rate by multiply-

ing the total accretion rate by the universal baryon fraction fb = Ωb,0/Ωm,0. The green

solid line corresponds to our gas accretion rate model (given by Ωb,0/Ωm,0 times eq. 3.22).

The blue dot-dashed line is the gas accretion rate proposed by Dekel & Krumholz (2013)

(dMb/dt = 30M ⊙yr−1fbM12(1 + z)5/2), who derived the baryonic inflow onto a halo
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Figure 3.6: Mean accretion rate of dark matter (top panel) and gas (bottom panel) as a function
of redshift for different halo masses. Top panel: the accretion rate obtained from the
simulation outputs up to the redshift where the halo mass histories are converged.
Grey dashed lines show the accretion rate estimated using eq. (3.22). Bottom panel:
gas accretion rate obtained from the REF−L100N512 simulation (grey circles), from
Ωb,0/Ωm,0 times eq. (3.22) (green solid line), and from various fitting formulae taken
from the literature.
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dMb/dt from the averaged growth rate of halo mass through mergers and smooth accre-

tion based on the EPS theory of gravitational clustering (Neistein et al. 2006; Neistein &

Dekel 2008). Lastly, we compare our model with the accretion rate formula from Fakhouri

et al. (2010) (dMb/dt = 46.1M ⊙yr−1fbM1.1
12 (1 + 1.11z)(Ωm,0(1 + z)3 + ΩΛ,0)1/2), plotted

as the purple dashed line. Fakhouri et al. (2010) constructed merger trees of dark mat-

ter halos and quantified their merger rates and mass growth rate using the Millennium

and Millennium II simulations. They defined the halo mass as the sum of the masses

of all subhalos within a FoF halo. We see that our accretion rate model is in excellent

agreement with the formulae from Fakhouri et al. (2010) and Dekel & Krumholz (2013).

We find that the Fakhouri et al. (2010) formula generally overpredicts the gas accretion

rate in the low-redshift regime (e.g. it overpredicts it by a factor of 1.4 at z = 0 for a

1012M ⊙ mass halo). The Dekel & Krumholz (2013) formula underpredicts (overpredicts)

the gas accretion rate in the low- (high-) redshift regime for halos with masses larger

(lower) than 1012M ⊙.

3.4 Analysis of scatter

3.4.0.1 Scatter in formation times and concentrations

We now analyse the scatter in the formation time−mass relation and show it relates to

the scatter in the concentration−mass relation. In §3.3.3 we show that the formation

time is related to halo concentration through the 〈ρ〉(< r−2) − ρcrit(z−2) relation plotted

in Fig. 3.2. Through first order error propagation, we look for the corresponding scatter

in the formation time,

900ρcrit(z−2) = 〈ρ〉(< r−2), (3.23)

900δ(ρcrit(z−2)) = δ(〈ρ〉(< r−2)), (3.24)

900

200
δ[Ωm(1 + z−2)3 + ΩΛ] = δ

(

c3 Y (1)

Y (c)

)

, (3.25)

3Ωm(1 + z−2)2z−2

(

δz−2

z−2

)

=
〈ρ〉(< r−2)

900ρ0

(

δc

c

)

(

3 − c2

(1 + c)2

1

Y (c)

)

, (3.26)

where we used δ(c3/Y (c)) = 3c2δc/Y (c) − c4δc/[Y (c)2(1 + c)2]. Eq. (3.26) relates the

scatter in formation time (|δz−2|/z−2) to the scatter in the concentration (|δc|/c).

The grey shaded areas in the panels in Fig. 3.3 show the scatter in z−2, while the

panels in Fig. 3.7 show the scatter in the c − M relation (left panel) and in the z−2 − M

relation (right panel). The grey contours in Fig. 3.7 enclose 68% of the distribution while
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Figure 3.7: Scatter in the concentration−mass relation (left panel) and the formation
redshift−mass relation (right panel). Left panel: Y-axis shows the difference be-
tween the concentration predicted by Duffy et al. (2008) (see eq. 3.3) and the actual
concentration from the simulation output. This difference is divided by the con-
centration from the simulation output and plotted against virial halo mass. The
different colours of the points indicate that the concentration outputs were obtained
from DMONLY−WMAP5 simulations with different box sizes. The grey contours
enclose 68% of the distribution while the individual points show the remaining 32%.
The black (green) solid line shows the mean relative scatter in the concentration-
mass relation per halo mass bin of the relaxed (complete) sample. The red dashed
line is an analytic estimate of the scatter obtained by propagating the scatter in
the formation redshift−mass relation to the concentration−mass relation (eq. 3.26).
Right panel: same as the left panel but the scatter is obtained from the difference
in the formation redshift predicted from eq. (3.9) and the simulation output. The
black (green) solid line shows the median value in the scatter as a function of mass
of the relaxed (complete) sample.

the individual points show the remaining 32%. The black (green) solid line shows the

mean scatter in the formation time per halo mass bin for the relaxed (complete) sample.

The presence of unrelaxed halos does not have any significant effect on either the scatter

in the formation time or the mass histories. The average scatter in formation time is

〈|δz−2|/z−2〉 = 0.324 (〈|δz−2|/z−2〉 = 0.356) for the relaxed (complete) sample.

The left panel of Fig. 3.7 shows that the average scatter in the concentration−mass

relation is 〈|δc|/c〉 = 0.257 for the full sample and 〈|δc|/c〉 = 0.218 for the relaxed

sample. In agreement with previous work (see e.g. Neto et al. 2007), the scatter in the

concentration of the relaxed halo sample is lower than the scatter of the full sample. The

extra scatter in the full sample is produced by the deviation of the density profiles from

the NFW form for halos experiencing ongoing mergers and for artificially linked halos.

Assuming 〈|δz−2|/z−2〉 = 0.324, 〈|δc|/c〉 can be obtained as a function of halo mass by

applying eq. (3.26). This analytic estimate is plotted in the left panel for the relaxed

sample (red dashed line). We find very good agreement between the scatter in concentra-

tion from eq. (3.26), and the median value plotted in black for the relaxed sample, and in

green for the complete sample. Therefore, we conclude that the scatter in formation time
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determines the scatter in the concentration. However, at higher masses and redshifts the

fraction of relaxed halos decreases (e.g. Ludlow et al. 2012) and it has been found that

the concentration-mass relation of the complete halo sample exhibits a strong flattening

and upturn (Klypin et al. 2011; Prada et al. 2012). As a result, at high masses and

redshifts the scatter in the concentration will probably depend on other variables besides

the scatter in formation time.

In the following subsection we find that the scatter in the accretion history determines

the scatter in the formation time.

3.4.0.2 Scatter in halo mass histories

In this section we analyse the scatter found when computing mass histories from the

simulation outputs. We analytically estimate the scatter in the mass history due to both

the scatter in the concentration and formation times (estimated in §3.4.0.1). We then

compare this to the scatter obtained from the simulation outputs.

To compute the scatter in the mass history we perform a first order error propagation

in M(z) (eq. 3.10),

δM(z)/M(z) = δα ln(1 + z) + zδβ, (3.27)

where δα (δβ) is the scatter in α (β) due to the scatter in c and z−2. From eq. (3.14) we

first compute δα due to the scatter in z−2,

δα = δ(−βz−2/ ln(1 + z−2))

=
−z−2δβ − βδz−2

ln(1 + z−2)
− βz−2δ[ln(1 + z−2)]−1

= −z−2β(1 + z−2 ln(1 + z−2))

(1 + z−2) ln(1 + z−2)

(

δz−2

z−2

)

, (3.28)

where in the last line we used δβ = −βz−2

(1+z−2)

(

δz−2

z−2

)

, which follows from eq. (3.20). Simi-

larly, we calculate the scatter in α due to the scatter in c,

δα = δ(ln(Y (1)/Y (c))/ ln(1 + z−2)

= −δY (c)

Y (c)

1

ln(1 + z−2)

= − c2

(1 + c)2Y (c) ln(1 + z−2)

(

δc

c

)

, (3.29)
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Figure 3.8: Mean scatter in the halo mass history against redshift for different halo masses
M200. The y-axis shows the mean value of the difference between the mass history
(Mfit) predicted by eqs. (3.10), (3.14) and (3.20), and the mass history (Msim) from
the simulation output. The difference is divided by the Msim from the simulation
output. The different coloured lines correspond to the different DMONLY−WMAP5
simulations as indicated in the legends. The grey lines show the analytic estimates
of the mass history curves given by eqs. (3.27), (3.28) and (3.29).

where in the last step we used δY (c) = c2

(1+c)2

(

δc
c

)

. Finally, we substitute δβ =

−βz−2

(1+z−2)

(

δz−2

z−2

)

and eqs. (3.28) and (3.29) into eq. (3.27). From §3.4.0.1 we adopt the

average scatter in z−2 and c for the complete sample, that is 〈|δc|/c〉 = 0.25 and

〈δz−2/z−2〉 = 0.35, and compute 〈|δM(z)/M(z)|〉 as a function of redshift. Fig. 3.8

shows the scatter measured from the simulation outputs (coloured lines) and from the

analytic estimates (grey dashed lines). The different coloured lines correspond to the me-

dian values of the scatter from simulations with different box sizes. We calculate these

by averaging the difference between the mass history predicted by eqs. (3.10), (3.14) and

(3.20) (for a given halo with mass M200 at z = 0), and each M(z) given by the merger

trees from the complete halo sample. The good agreement we find between the median

values of the scatter and the analytic estimate seems to indicate that the scatter in the

concentration comes from the scatter in the formation time, which in turn comes from the

scatter in the halo mass history. However, despite our efforts this is not entirely certain,

since there are large deviation at z > 2 and therefore other variables may modify the

scatter in the mean density profile of halos. We plan to analyse the origin of the scatter

in more detail in future work.

3.4.1 Dependence on cosmology and mass definition

We have developed a semi-analytic model that relates the inner structure of a halo at

redshift zero to its mass history. The model adopts the NFW profile, computes the
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mean inner density within the scale radius, and relates this to the critical density of the

universe at the redshift where the halo virial mass equals the mass enclosed within r−2.

This relation enables us to find the formation redshift - halo mass dependence and to

derive a one parameter model for the halo mass history. In this section we consider the

effects of cosmology and mass definition on the semi-analytic model.

3.4.1.1 Cosmology dependence

The adopted cosmological parameters affect the mean inner halo densities, concentrations,

formation redshifts and halo MAHs. In this section we investigate how the parameters in

the semi-analytic model (such as formation redshift) change with cosmology. To do so, we

have run a set of dark matter only simulations with different cosmologies. Table 3.2 lists

the sets of cosmological parameters adopted by the different simulations. Specifically, we

assume values for the cosmological parameters derived from measurements of the cosmic

microwave background by the WMAP and the Planck missions (Spergel et al. 2003, 2007;

Komatsu et al. 2009; Hinshaw et al. 2013; Planck Collaboration et al. 2014).

In Chapter 2 we investigate how the variation of the cosmological parameters ns, σ8,

h, Ωm,0 and ΩΛ,0 impact on the halo MAH using the analytic model. We find that in

universes with larger σ8 and Ωm,0 halos form earlier. Similarly, in universes with larger

ns low-mass halos form earlier, but high-mass halos form later. Finally, in universes with

larger values of h, the growth of structures is faster and the formation of halos is earlier.

It has been shown that halos that formed earlier are more concentrated (Navarro et al.

1997; Bullock et al. 2001; Eke et al. 2001; Kuhlen et al. 2005; Macciò et al. 2007; Neto

et al. 2007). Macciò et al. (2008) explored the dependence of halo concentration on the

adopted cosmological model for field galaxies. They found that dwarf-scale field halos

are more concentrated by a factor of 1.55 in WMAP1 compared to WMAP3, and by a

factor of 1.29 for cluster-sized halos. This clearly reflects the fact that halos of a fixed

z = 0 mass assemble earlier in a universe with higher Ωm,0, higher σ8 and/or higher ns.

The halo formation redshift can be related to the power at the corresponding

mass scale, and therefore depends on both σ8 and ns. The parameter σ8 sets

the power at a scale of 8 h−1Mpc, which corresponds to a mass of about 1.53 ×
1014h−1M ⊙(Ωm,0/Ωm,0,WMAP5), and a wavenumber of k8. This last quantity is given by

the relation M = (4πρm/3)(2π/k)3. For a power-law spectrum P (k) ∝ kn, the variance

can be written as σ2(k)/σ2
8 = (k/k8)n+3. Therefore, the change in σ between WMAP5

and WMAP1 for a given halo mass that corresponds to a wavenumber k is

σWMAP1(k)

σWMAP5(k)
=

σ8,WMAP1

σ8,WMAP5

(

k

k8

)(ns,WMAP1−ns,WMAP5)/2

. (3.30)
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Figure 3.9: MAHs of halos, obtained from simulations with the WMAP1 cosmology
(DMONLY−WMAP1−L100N512, blue solid lines) and the WMAP5 cosmology
(DMONLY−WMAP5−L100N512, green solid lines). The curves show the median
mass history of the main progenitors, normalized to the median enclosed mass,
Mr(r−2), of the main progenitors at z = 0. The MAHs are plotted as a function of
the mean background density of the universe, scaled to the mean background den-
sity at z−2. The blue dashed line is a fit of expression (3.17) to the different mass
history curves. The median value of the only adjustable parameter, γ, is indicated
in the top-right part of the plot. We find that γ is insensitive to cosmology.

A halo mass of 1012M ⊙ corresponds to a wavenumber of k1.3 ∼ 6k8. The total change in

the mean power spectrum at this mass scale is σWMAP1(k1.3)
σWMAP5(k1.3) = 1.27. This is proportional

to the change of the formation redshift,

(1 + zf,WMAP1) = 1.27(1 + zf,WMAP5). (3.31)

Next, we test how this change affects the halo MAH. We haven shown that the MAH

profile is well described by the expression M(z) = Mz(z = 0)(1 + z)αeβz, where α and β

both depend on the formation redshift. In the MAH model presented in §3.3.4 there are

two best-fitting parameters that can be cosmology dependent. One is the constant value

A = 900 in eq. (3.8) that relates the mean inner density to the critical density at z−2,

and the other is the constant value γ = −3 in eq. (3.20) that defines the β parameter.

To investigate the cosmology dependence of A, we analyse the 〈ρ〉(< r−2) − ρcrit(z−2)

relation in the simulations with different cosmologies. We do the same as in §3.3.3.

First we fit the NFW profile to dark matter halos to obtain c and r−2, and calculate

the cumulative mass, M−2, and density, 〈ρ〉(< r−2), from r = 0 to r = r−2. Then

we follow the halo MAHs through the snapshots and interpolate to calculate z−2, the

redshift for which M(z) is equal to M−2. Finally, we obtain the best-fit 〈ρ〉(< r−2) −
ρcrit(z−2) relation. We find that the parameter Acosmo, where cosmo is WMAP1, WMAP3,

WMAP5, WMAP9 or Planck, changes with cosmology. We show this in the top panel of

Fig. 3.10. We find AWMAP1 = 787±52.25, AWMAP3 = 850±39.60, AWMAP5 = 903±48.63,
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AWMAP9 = 820 ± 51.03 and APlanck = 798 ± 43.73. We do not find good agreement with

Ludlow et al. (2013), who found AWMAP1 = 853 for WMAP1 cosmology. This is due to

the fact that we are only analyzing the 〈ρ〉(< r−2) − ρcrit(z−2) relation in the high-mass

regime (M = 1012.8 −1013.8M ⊙), due to the limitations of the box size (L = 100 h−1Mpc).

With a more complete halo population, we may obtain better agreement. We conclude

that the Acosmo parameter depends on cosmology, at least for the halo mass ranges we

are considering.

Next, we analyse how the change of the formation redshift due to cosmology affects

β, defined as β = −3/(1 + zf). We find from Fig. 3.9 that the constant value, −3, is

insensitive to cosmology. Fig. 3.9 shows the same analysis as Fig. 3.4, but for halo MAHs

obtained from simulations with the WMAP1 and WMAP5 cosmology as indicated in the

legends. We fit expression (3.17) to the mass history curves from different cosmologies

and obtained the same adjustable parameter γ. We therefore conclude that γ = −3 is

insensitive to cosmology.

If we then consider that the change in β between WMAP1 and WMAP5 is βW MAP 1 =

−3/(1 + zf,WMAP1) = −3/1.27/(1 + zf,WMAP5) = βW MAP 5/1.27, the change in the halo

MAH between the WMAP5 and WMAP1 cosmologies, for a halo mass of 1012M ⊙ at

z = 0, corresponds to

log10

M(z)WMAP1

M(z)WMAP5
= log10 e(βWMAP1−βWMAP5)z

≈ −0.12βWMAP1z,

≈ 0.1z. (3.32)

In the last step we replaced βWMAP1 by −3/(1 + zf,WMAP1) = −0.75 for a 1012M ⊙ halo.

We obtained zf,WMAP1 from the 〈ρ〉(< r−2) − ρcrit(z−2) relation suitable for the WMAP1

cosmology (see top panel of Fig. 3.10) and the c − M relation from Neto et al. (2007).

Next, we test the change in halo MAH. For example, if a halo had a mass of 1011.4M ⊙

at z = 2 in the WMAP5 cosmology, it would have had a mass of 1011.6M ⊙ in the

WMAP1 cosmology. The value of σ8 has a particularly large effect at high redshift,

because structure formation proceeds faster in the WMAP1 cosmology, as shown by the

above expression. This last point can also be seen in the two panels of Fig. 3.10. The

top panel is the same as the right panel of Fig. 3.3, and shows the formation redshift,

z−2, as a function of halo mass (obtained from simulations with different cosmologies).

We see that there are large differences between the WMAP5 and WMAP1 cosmologies

due to the changes in σ8 and ns. Interestingly, there is only a small difference between

the Planck and WMAP1 cosmologies (in agreement with Ludlow et al. 2014 and Dutton

& Macciò 2014), and also between the Planck and WMAP9 cosmologies for which we
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Figure 3.10: Top panel: Relation between formation redshift (z−2) and halo mass at z = 0 (M0).
The different symbols correspond to median values, the error bars to 1σ confidence
limits and the grey area to the scatter. These were computed from the dark matter
only simulations that assumed a WMAP3 (light blue line), WMAP5 (blue line),
WMAP1 (green line), WMAP9 (purple line) and Planck cosmology (dark blue line).
The solid lines are not fits, but predictions of the z−2 − Mhalo relation given by
eq. (3.9). We also indicated the different values of the constant of proportionality
A obtained by fitting the 〈ρ−2〉 − ρcrit(z−2) relation. Bottom panel: halo mass
history of a halo of 1012M ⊙ at z = 0 from DMONLY simulations with different
cosmologies. The grey curves show that as long as a suitable concentration-mass
relation is assumed for the cosmology under consideration, eqs. (3.44), (3.45) and
(3.46) give a good estimate of the mass history curve.
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found (1 + zf)Planck = 1.01(1 + zf)WMAP9 for a 1012M ⊙ halo. The bottom panel of Fig.

3.10 shows the mass history of 1012M ⊙ halos at z = 0 from DMONLY simulations with

different cosmologies. As predicted, the change in mass history between the WMAP5 and

WMAP1 cosmologies is log10
M(z)WMAP1

M(z)WMAP5
∼ 0.1z. While little difference is found between

the WMAP9 and Planck (∆M(z) ∼ 10−3z).

We found that as long as a suitable c − M relation and value for the A parameter

are assumed for the cosmology being considered, eqs. (3.44), (3.45) and (3.46) provide a

good estimate of the mass history curve. This can seen in the bottom panel of Fig. 3.10

by comparing the different halo MAHs. For the WMAP5 and WMAP3 cosmologies we

assumed the c − M relation found by Duffy et al. (2008), whereas we used the relation

from Neto et al. (2007) for the other cosmologies. For a step-by-step description of

how to use the mass history models (analytic and semi-analytic) that were presented in

Chapter 2 and §3.3.4, respectively, see Appendix A.

3.4.1.2 Mass definition dependence

So far our calculations have been based on a halo mass defined as the mass of all matter

within the radius r200 at which the mean internal density 〈ρ〉(< r200) is a factor of ∆ = 200

times the critical density of the universe, ρcrit (from now on we denote this halo mass by

M200). In the literature a number of values have been used for ∆. Some authors opt to

use ∆ = 200 (e.g., Jenkins et al. 2001) or ∆ = 200Ωm(z) (e.g. NFW), while others (e.g.,

Bullock et al. 2001) choose ∆ = ∆vir according to the spherical virialization criterion

of Bryan & Norman (1998). These definitions can lead to sizeable differences in c for a

given halo and, as discussed, the differences are also cosmology-dependent.

In this section we study how the structural properties and MAHs depend on the

adopted mass definition. We analyse halo MAHs of relaxed halos using three differ-

ent halo mass definitions. First, we use M200. Secondly, we use Mmean, which is the

mass within the radius rmean for which the mean internal density is 200 times the mean

background density. Finally, Mvir is the mass within the radius rvir for which the mean

internal density is ∆vir times the critical density as determined by Bryan & Norman

(1998). Note that halo masses and radii are determined using a spherical overdensity rou-

tine within the SUBFIND algorithm (Springel et al. 2001) centred on the main subhalo

of the FoF halos (Davis et al. 1985). We perform all calculations for the three different

halo definitions, taking the halo centre to be the location of the particle in the FoF group

for which the gravitational potential is minimum.

Eq. (3.8) shows that the formation redshift is directly proportional to the mean density

within the scale radius ((1 + z−2)3 ∝ 〈ρ〉(< r−2)), but the constant of proportionality

depends on the mass definition that is adopted. Therefore, a change in the mass definition
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changes the formation time as

(1 + zf )∆1

(1 + zf )∆2

≈
(〈ρ〉(< r−2)∆1

〈ρ〉(< r−2)∆2

)1/3

, (3.33)

where ∆1,2 refers to different overdensity criteria. That is, from eq. (3.5), 〈ρ〉(< r−2)

changes according to the mass definition as 〈ρ〉(< r−2)∆ = ∆ × ρcrit,0c3
∆Y (1)/Y (c∆).

Then 〈ρ〉(< r−2)∆1=200 refers to the mean internal density within r−2, obtained by

defining the mean internal density at the virial radius to be 200ρcrit,0. If we consider

∆1 = 200 and ∆2 = mean = 200Ωm, and that there is a factor of 0.55 difference between

the concentrations c200 and cmean for a 1012M ⊙ halo, then we obtain (using eq. 3.33)

the relation (1 + zf)200 ≈ (0.255Ω−1
m,0)1/3(1 + zf)mean, where we have used the fact that

〈ρ〉(< r−2)mean ∼ (Ωm,0/0.255)〈ρ〉(< r−2)200
ii. This implies that the change in the halo

mass history due to different halo mass definitions is

log10

M(z)200

M(z)mean
= log10(1 + z)α200−αmean

+ log10 e(β200−βmean)z (3.34)

≈ 0.956α200 log10(1 + z) (3.35)

+[1 − (0.255/Ωm,0)1/3] log10(e)β200z

≈ 0.0543z, (3.36)

where in step (3.35) we replaced α200 − αmean ≈ 0.956α200, which is valid for a 1012M ⊙

halo, and α200 = 0.2501 and β200 = −0.8147.

The difference in MAH given by eq. (3.36) can be seen in Fig. 3.11, which shows

how the halo MAH is affected by the halo mass definition. The green line in Fig. 3.11

shows the MAH assuming the M200 mass definition. The purple line shows the Mvir

definition, and the dark blue line shows the Mmean definition. The different dashed lines

correspond to the MAHs M(z) = M(z = 0)(1 + z)αeβz, where the difference lies in the

mass definition that changes the mean inner density and the c−M relation (for a relaxed

halo sample). Duffy et al. (2008) studied how the halo mass definition changes the

c−M relation, and provided the parameters of the different c−M relations. They found

that the concentration of a relaxed Mmean halo is 80% larger than the concentration of

a relaxed M200 halo. We adopt those fits in our calculations of the M(z) estimate and

conclude that, as long as we use a c−M relation that is consistent with the adopted halo

mass definition, the expressions (3.10), (3.14) and (3.20) accurately reproduce the halo

mass history.

iiIn this last step we used the approximation that 〈ρ〉(< r−2)∆ = ∆ × c3Y (1)/Y (c)ρcrit,0 ≈ ∆ ×
0.643c2.28ρcrit,0
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Figure 3.11: Mass history of a 1012M ⊙ halo as a function of redshift. The different coloured
lines show the change in the mass history when different halo mass definitions
are used. The green line shows the mass history of a halo of M200 = 1012M ⊙

at z = 0, whereas the dark blue (purple) line shows the mass history of a halo
of Mmean = 1012M ⊙ (Mvir = 1012M ⊙) at z = 0. The dashed lines show the
mass history predicted by eqs. (3.44), (3.45) and (3.46). The difference lies in the
formation redshift definition which is affected by the change in the mean inner
density (see eq. 3.8). The value of 〈ρ〉(< r−2) changes with the value of ∆ we used
in the definition of halo mass. The c−M relation correspond to the mass definition
under consideration.

The analytic estimate given by eq. (3.36) predicts that the difference in mass his-

tory due to the change in the mass definition (M200 versus Mmean) is ∆ log10 M(z) ≈
0.0543z. This can be seen in Fig. 3.11, where ∆ log10 M(z) = 0.1086 at z = 2

(Mmean(z = 2) = 1011.3035M ⊙ and M200(z = 2) = 1011.4117M ⊙). Note that Fig. 3.11 is

not showing M200(z), Mmean(z) and Mvir(z) for the same stack of halos. We select halos

that have masses (either M200, Mmean or Mvir) equal to 1012 M⊙ at z = 0 (within 0.2

dex) and compare their MAHs. In the case we select the same stack of halos, M200(z)

should be smaller than Mmean(z).

3.5 Comparison between semi-analytic and analytic models

In this section we compare the semi-analytic model derived in §3.3.4, with the analytic

model for halo mass history derived in Chapter 2. Note that while the semi-analytic

model is obtained through fits to simulations, the analytic model is based on the EPS

theory without calibration against simulations, and only depends on the power spectrum

of the primordial density perturbations.

Fig. 3.12 shows a comparison between the models for various halo masses
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Figure 3.12: The top panels show a comparison between the semi-analytic (solid lines) and
the analytic model (dashed lines) for halo mass history. The bottom panels show
the residuals between the models. The different coloured lines correspond to the
models for various halo masses in range log10[M0/M ⊙] = 6 − 15.

(log10[M0/M ⊙] = 6 − 15). As can be seen from the figure, the models mostly agree

on the MAHs of halos with final masses between 1010 and 1014M ⊙. However, there are

a few factors of difference in the MAHs of larger and smaller halos, and the difference in-

creases towards high redshift. We find that in the analytic model the halo mass decreases

quite abruptly at high redshift for halos with final masses > 1014M ⊙. For instance, there

is a factor of 9 difference at z = 5 between the models for a 1015M ⊙ halo. This difference

is probably due to the progenitor definition. In the analytic model, the progenitor is

defined as the halo with mass a factor of q lower (q ∼ 4 for M0 > 1014M ⊙) at redshift zf

(zf ∼ 0.9), whereas in the semi-analytic model, the progenitor is the halo that contains

most of the 25 most bound dark matter particles in the following snapshot.

Fig. 3.12 also shows that the semi-analytic model overpredicts the MAHs of halos with

final masses < 109M ⊙. This is expected because the parameters α and β in the semi-

analytic model depend on the c − M relation adopted. In this case we are using Duffy

et al. (2008) relation, which is calibrated in the mass range 1010 − 1014M ⊙, for lower

masses the c − M relation deviates from a simple power-law (Ludlow et al. 2014).

Next, we combine these two models (semi-analytic and analytic) to establish the phys-

ical link between a halo concentration and the linear rms fluctuation of the primordial

density field. From Fig. 3.12 we have found that there are a few factors of difference

between the models. We now focus on the mass range 1011 − 1014M ⊙, where the factor

of difference is less than 1.5. We set the mass history curve to be the same in the two

models, that is
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M(z)Analytic = M(z)Semi−analytic (3.37)

for all redshifts. We then evaluate this equality at redshift 1 and obtain,

f(M0)

(

0.92
dD

dz
|z=0 − 0.3

)

= αS(c) ln(2) + βS(c). (3.38)

In this last equation, αS(c) and βS(c) are given by eqs. (3.18) and (3.20), respectively, and

depend on concentration, D is the linear growth factor and f(M0) depends on the rms

of the primordial density field, σ. We approximate various terms in eq. (3.38), including

f(M0) ∼ 1.155(σ(M0)2)0.277 and Y (1)/Y (c) ∼ 0.643c−0.71, and obtain

c = 3σ0.946 + 2.3, (3.39)

which is suitable for a WMAP5 cosmology. Note that eq. (3.39) is not a fit to any

simulation data, it has been derived from eq. (3.38). Fig. 3.13 shows the c − σ relation at

z = 0. In this figure we compare the predicted relation (solid line), as given by eq. (3.39)

(obtained by equaling the analytic and semi-analytic models), with the simulation outputs

(coloured symbols). The different symbols correspond to the median values of the relaxed

sample of halos and the error bars to 1σ confidence limits. The good agreement between

the analytic prediction and the simulation outputs clearly shows that the halo MAH is

the physical connection in the c − σ correlation.

3.6 Halo accretion history and assembly bias

The Markovian nature of the EPS formalism implies that the environment of halos of

given mass should be independent of their assembly histories (White 1996). However,

statistical analysis of formation time distributions demonstrated that halos in dense en-

vironments (i.e. in close pairs) have slightly earlier assembly times than typical objects

of the same mass (Sheth & Tormen 2004). The dependence of halo clustering on halo

MAH at fixed mass is known as assembly bias (Gao et al. 2005; Wechsler et al. 2006; Gao

& White 2007; Wu et al. 2008; Lacerna & Padilla 2011, 2012; Zentner et al. 2014).

Recently, Hearin et al. (2015) investigated the correlations between the mass accretion

rates, dM/dt, of nearby halos, and found that since these halos reside in the same large

scale tidal field, the environment regulates their dM/dt. As a result, slow-accreting halos

cluster more strongly than fast-accreting halos of the same mass. However, assembly bias

implies that early-forming halos cluster more strongly than late-forming halos of the same

mass. Then, we can conclude that strong clustered halos, that reside in preferentially

denser environments and form earlier, have lower dM/dt at z = 0, than late-forming
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Figure 3.13: Comparison between the σ−c relation at z = 0 predicted by the combination of the
mass history models (solid line), and the simulation outputs (coloured symbols).

halos of the same mass.

In this section we investigate whether the MAH model derived in §3.3.4 is able to

predict the drop in the accretion rates of strong clustered halos. To do so, we assume

that the formation time, z−2, is an ‘indirect measure’ of clustering and an independent

parameter in the model. We calculate the accretion rate history of a halo of mass M0 at

z = 0 as

dM(M0, z−2, z)

dt
= 71.6 M ⊙yr−1 M12(M0, z−2, z)h0.7[−α(M0, z−2) − β(z−2)(1 + z)]

× [Ωm,0(1 + z)3 + ΩΛ,0]1/2, (3.40)

M12(M0, z−2, z) = (M0/1012 M⊙)(1 + z)α(M0,z−2)eβ(z−2)z, (3.41)

α(M0, z−2) = [ln(Y (1)/Y (c(M0)) − βz−2]/ ln(1 + z−2), (3.42)

β(z−2) = −3/(1 + z−2). (3.43)

We next compare the accretion rate histories of halos that have the same mass at

z = 0, but formed at different times. Fig. 3.14 shows the accretion rates (left panel)

and mass histories (right panel) of halos that have masses of 1012 M⊙ at z = 0. The

different coloured lines correspond to various formation times as indicated in the legend.

We find that as the formation time increases, dM/dt at low-z decreases, as suggested by
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Figure 3.14: Accretion rate histories (left panel) and mass histories (right panel) as a function
of redshift of halos that have masses of 1012 M⊙ at z = 0, but formed at z−2 = 2.6
(solid red line), z−2 = 3.0 (dashed orange line), z−2 = 3.5 (dashed purple line),
z−2 = 4.0 (dot-dashed light blue line) and z−2 = 4.5 (solid blue line).

Hearin et al. (2015). Halos forming earlier, have larger dM/dt at high-z, that reaches a

maximum value at the halo formation time. At z < 1.6, early-forming halos have lower

accretion rates than late-forming halos.

In Chapter 6 we investigate the correlation between gas accretion onto galaxies and the

host halo dark matter accretion rate. We believe that if both rates are tightly coupled

as recently suggested (Wetzel & Nagai 2015), the relation between halo MAH and its

formation time can potentially predict the mass and redshift dependence of large-scale

galactic conformityiii (Hearin et al. 2015).

3.7 Summary and conclusion

In this chapter we have demonstrated that there is an intrinsic relation between halo

assembly history and inner halo structure, and that the mass history is the physical

connection between the inner halo structure and the power spectrum of initial density

fluctuations.

We examined the density profiles and mass growth histories of a large sample of halos

and their progenitors within the OWLS simulations. We separated our halo sample into

a ‘relaxed’ sample, and a ‘complete’ sample that includes both relaxed and unrelaxed

halos. We confirmed the finding of Ludlow et al. (2013) that for relaxed halos the mean

enclosed density within the NFW scale radius (r−2), 〈ρ〉(< r−2), is directly proportional

to the critical density of the Universe at the formation redshift, z−2, defined as the time

at which the mass of the main progenitor equals the mass enclosed within the scale radius

at z = 0, 〈ρ〉(< r−2) = 900ρcrit(z−2).

iiiGalactic conformity (first introduced by Weinmann et al. 2006), is the tendency of neighboring galaxies
to have similar specific star formation rates, colors, gas fractions and morphologies.
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Regarding the halo internal structure, we have found that on average, halo concentra-

tions differ by a factor of 1.16 between the relaxed and complete samples. The lower

individual concentrations of unrelaxed halos (due to spurious subhalos or ongoing merg-

ers that do not result in an accurate fit for an NFW density profile) produce incorrect

enclosed halo masses and therefore lower formation times (by a factor of 1.1). However,

on average, the z−2 − c relation does not change, thus indicating that the halo MAH is

not affected by the fact that a halo is out of equilibrium at a particular redshift.

We have found that formation time decreases with increasing mass (at a non-linear

rate). This means that high-mass halos are still accreting mass rapidly in the present

epoch, while low-mass halos typically accreted their mass early. Thus, the z−2 − c re-

lation provides the physical link between the halo MAH and internal structure. This

result led us to provide a semi-analytic model for the halo MAH, which uses a direct,

analytic correlation between the parameters α and β in the mass history (eq. 3.44) and

concentration,

M(z) = M0(1 + z)αeβz, (3.44)

α = [ln(Y (1)/Y (c)) − βz−2]/ ln(1 + z−2), (3.45)

β = −3/(1 + z−2), (3.46)

where we obtained the constant value, −3.01 ± 0.08, in the last relation (eq. 3.46) by

fitting the halo mass history model (eq. 3.44) to the simulation data.

We have investigated how cosmology affects the semi-analytic model. We found that

as long as a suitable c − M relation and the value for the best-fitting parameter in the

〈ρ〉(< r−2) − ρcrit(z−2) relation are assumed for the cosmology being considered, the semi-

analytic models describes the MAHs with high accuracy. In addition, we investigated

how different mass definitions change the halo mass histories and we found that as long

as we use a c − M relation that is consistent with the adopted halo mass definition, the

semi-analytic model accurately reproduces the halo mass history.

In addition, we have compared the analytic model from Chapter 2 with the semi-

analytic model presented in this chapter and found very good agreement in the mass

range 109 − 1014M ⊙. However, we found that the analytic model predicts larger masses

at high redshift for halos with final masses > 1014M ⊙, whereas the semi-analytic model

overpredicts the mass history of low-mass halos (halos with final masses < 109M ⊙). This

is expected because the semi-analytic model depends on the adopted c − M relation,

which deviates from the assumed power-law at low masses. The reader may find a step-

by-step guide on how to implement the semi-analytic model in Appendix A, as well as
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numerical routines onlineiv.

Interestingly, by combining these two models (semi-analytic and analytic) we estab-

lished the physical link between a halo concentration and the initial density perturbation

field, which explains the correlation between concentration and rms fluctuation of the

primordial density field, σ (Fig. 3.13).

Putting the pieces together, we have addressed the question of how the structure of

halos depends on the primordial density perturbation field. We have found that concen-

tration is the link between the halo mass profile and the halo mass history (and that

one can be determined from the other). We have also found that the ‘shape’ of the halo

mass history is given by the linear growth factor and linear power spectrum of density

fluctuations. Therefore, we concluded that halo concentrations are directly connected to

the initial density perturbation field.

In the next chapter we combine the analytic and semi-analytic models to predict the

c − M relation. We investigate its evolution and show that extrapolations to low masses

of power-law fits to simulation results are highly inadequate, and investigate whether

linear 〈ρ〉(< r−2) − ρcrit(z−2) relation holds at redshifts other than 0.

ivAvailable at https://bitbucket.org/astroduff/commah.

https://bitbucket.org/astroduff/commah




4
A physical model for the

concentration-mass relation
This chapter presents the physical relation between the dark matter halo concentration and the

mass accretion history.

It is generally believed that the concentration-mass relation (throughout this thesis c−M

relation) relies on the fact that concentrations depend on the evolutionary stage of halos

when they were formed, and thus on their mass accretion histories (throughout this

thesis MAH). In this chapter we explore the relation between the halo MAH and its

concentration. We derive a semi-analytic, physically motivated model for dark matter

halo concentration as a function of halo mass and redshift. The semi-analytic model

combines an analytic model for the halo MAH derived in Chapter 2, with the empirical

relation between concentration and formation time obtained in Chapter 3. The model

predicts a change of slope in the z ∼ 0 c−M relation at a mass scale of 1011 M⊙. We find

that this is due to the change in the functional form of the halo MAH, which goes from

being dominated by an exponential (for high-mass halos) to a power-law (for low-mass

halos). During the latter phase, the core radius remains approximately constant, and

the concentration grows due to the drop of the background density. We also analyse how

the c − M relation predicted by this work affects the power produced by dark matter

annihilation, finding that at z = 0 the power is two orders of magnitude lower than

that obtained from extrapolating best-fitting c − M relations. Finally, we provide fitting

formulas for the c − M relations, a step-by-step description on how to implement the

semi-analytic c − M model in Appendix A, as well as numerical routines onlinei.

iAvailable at http://astro.physics.unimelb.edu.au/Research/Public-Data-Releases/COMMAH

http://astro.physics.unimelb.edu.au/Research/Public-Data-Releases/COMMAH
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4.1 Introduction

Over the past few years large cosmological simulations have been performed to determine

the properties of dark matter halos, including density profiles, shapes and accretion histo-

ries (see e.g. Bryan et al. 2013; Klypin et al. 2011; Springel et al. 2005). These properties

are of particular interest, as forming galaxies depend on the structural properties of the

halos in which they are embedded.

During hierarchical growth, halos acquire a density profile with a near universal shape,

that can be described by the NFW profile (Navarro et al. 1996, 1997). As discussed in

§1.2.3 and in §3.3.1, the NFW density profile is described by just two parameters, halo

mass, M , and concentration, c. A halo’s concentration is defined as the ratio of the virial

radius, r200, and the scale radius, r−2, which is defined as the radius where the logarithmic

density slope is −2. Thus, given the NFW profile, only a relation between concentration

and halo mass is needed to fully specify halo structure at fixed mass. Therefore, numerous

studies have been undertaken to improve the c − M calibration.

Despite its importance, there is still no solid agreement on the dependence of halo

concentration on halo mass and redshift. A small change in the adopted cosmology can

have important effects on the structure of dark matter halos (Macciò et al. 2008), and

on their mass histories (Zhao et al. 2009, but also see 2.3 and 3.4.1.1). For example,

the mean concentrations of dwarf-scale dark matter halos change by a factor of 1.5 be-

tween the various Wilkinson Microwave Anisotropy Probe (WMAP) cosmologies (Spergel

et al. 2003, 2007). The Planck cosmology (Planck Collaboration et al. 2014) has higher

matter density, Ωm,0, and higher power spectrum normalization, σ8, compared to the

cosmological parameters of the year 5 data release of WMAP (WMAP5; Komatsu et al.

2009). The Planck cosmology therefore suggests that halos assemble earlier and are more

concentrated (c.f. c − M relations from Dutton & Macciò 2014 and Duffy et al. 2008).

However, cosmology may not be the primary reason for the differences in the c − M

relations found by various authors. Recent works that adopt the same cosmology still

find different c − M relations (compare for example Dutton & Macciò 2014 and Diemer

& Kravtsov 2015, or Klypin et al. 2011 and Prada et al. 2012). Dutton & Macciò (2014),

found that the c−M relation is well described by a power-law, but flattens at high redshift

and exhibits a positive slope at z > 4. In contrast, Diemer & Kravtsov (2015) found a

strong upturn in the high-mass end of the c − M relation at all redshifts. The disparity

between these studies could be due to the dynamical state of the selected dark matter

halos. For example, Ludlow et al. (2012) showed that massive halos that are substantially

out of equilibrium are more likely to be found at a transient stage of high concentration,

thus explaining the puzzling upturn in the high-mass end of the c − M relation. Indeed,

they reported that the upturn disappears when only dynamically-relaxed systems are
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considered. However, Klypin et al. (2014) argued that the virial criterion used by Ludlow

et al. (2012) to select relaxed systems is incorrect, as it needs to include effects of the

surface pressure and external forces. Klypin et al. (2014) modified the virial criterion and

ended up selecting massive halos that had previously been considered as unrelaxed. As

a result, Klypin et al. (2014) obtained an upturn in the c − M relation of their relaxed

halo sample and concluded that the upturn is a real feature of the c − M relation. They

explained that as extremely massive halos have more radial infall velocities, infalling mass

penetrates deeper within the inner halo, thus increasing the concentration and producing

the upturn.

The main goal of this chapter is to derive a physically motivated model for the c − M

relation of relaxed halos based on the dark matter halo accretion history. We extend the

analysis done in Chapter 3 by deriving a halo MAH model (based on the analytic model

of Chapter 2) suitable to the describe the halo MAH at any starting redshift. By doing

that, we are able to explore the c − M relation at any redshift (not only redshift zero)

and its evolution. By relating the concentration to the halo accretion history, we find

that the c − M relation does not show any upturn or strong flattening. We then study

the c − M relation in detail using simulations and selecting relaxed halos without using

the virial criterion, and investigate whether recently accreted particles are able to reach

the inner parts of the halo and thus increase the concentration.

Our c−M model relies on the fact that concentrations depend on the evolutionary stage

of halos when they were formed. Several works have suggested that halo formation can be

described as an inside out process, where a bound core (of a certain fraction of the halo

mass today) collapses, followed by the gradual addition of material at the cosmological

accretion rate (Manrique et al. 2003; Wang & Abel 2007; Dalal et al. 2010; Salvador-Solé

et al. 2012, see also §3.3.2). In this framework, the halo concentration should depend on

the epoch at which a certain fraction of the halo mass was assembled. As a result, various

authors (Bullock et al. 2001; Wechsler et al. 2002; Zhao et al. 2003; Ludlow et al. 2014)

have provided models that relate c to the halo MAH. For instance, Zhao et al. (2003)

showed that when the mass accretion rate of a halo slows down at low redshift, its scale

radius, r−2, remains approximately constant, and hence that concentration scales with

the virial radius. On the other hand, in the regime of a high mass accretion rate (at high

redshift), the scale radius scales approximately as the virial radius and thus c remains

constant.

As we have seen the previous chapter, the connection between a halo’s MAH and

its concentration, c, is obtained through its ‘formation’ time. The halo formation (or

assembly) time is traditionally defined as the point in time when the halo mass reached

a fraction of the total mass today. Low-mass halos typically assemble earlier, when the

Universe was denser, than high-mass halos do. As a result, low-mass halos are more
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concentrated. Clearly, if concentration correlates with formation time, and formation

time depends on the mass variance, σ (because σ describes the halo MAH, see the analytic

model for the MAH from Chapter 2), then it is expected that c correlates with σ and

hence with the peak height, ν, defined as ν = 1.686/σ. This is indeed what several works

have found (e.g. Zhao et al. 2009; Prada et al. 2012; Ludlow et al. 2014; Dutton & Macciò

2014). Chapter 3 shows that the physical origin of the c − σ (or c − ν) relation is the

halo MAH.

Chapters 2 and 3 present two models for the MAH of halos, an analytic model and a

semi-analytic model, respectively. The semi-analytic model uses a functional form for the

MAH, that is motivated by the EPS theory, and links the MAH to halo structure through

two empirical relations obtained from simulations. The analytic model is based on the

EPS formalism and thus does not require calibration against any simulation data.

In the analytic model, the halo MAH is described in terms of the rms of the density

perturbation field, σ, as M(z) = M0(1 + z)af(M0)e−f(M0)z, where M0 refers to the present

halo mass, a depends on cosmology, and f(M0) ∼ 1/σ(M0). This expression illustrates

that as σ decreases with halo mass, the function f(M0) increases, causing the exponential

in M(z) to dominate. As a result, high-mass halos accrete faster than low-mass ones, due

to their low value of σ. As low σ implies large peak height, the EPS formalism predicts

that density perturbations with large ν experience an accelerated collapse phase relative

to the average, and grow faster in time.

This chapter presents a semi-analytic, physically motivated model for dark matter

halo concentration as a function of halo mass, redshift and cosmology. The semi-analytic

model, which builds on that of Ludlow et al. (2014), uses the analytic model for the

halo MAH derived in Chapter 2 as well as an extension of the empirical relation between

concentration and formation time obtained in Chapter 3. As a result, the semi-analytic

model for halo concentrations shows how the c − M relation is expected to evolve based

on the hierarchical growth of halos.

This chapter is organized as follows. We begin in §4.2 with a short description of the

analytic MAH model and extend it to make it suitable to describe the halo MAH at any

starting redshift zi and not just z = 0. We refer to this model as the extended analytic

model. In §4.3, we define halo formation time and build an empirical relation between

formation time and concentration through fits to simulation data. Next, we describe the

semi-analytic model for halo concentrations that combines the extended analytic model

for the MAH and the empirical relation described previously. We analyse the evolution of

concentration that predicts the semi-analytic model in §4.5. In §4.6 we discuss the impact

of the results of our semi-analytic model for halo concentration on the signal from dark

matter annihilation. In §4.7 we discuss the main assumptions the semi-analytic model

relies on. Finally, we summarize and conclude in §4.8.
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Throughout this chapter we compare our analytic results to the output from numerical

simulations. We use a set of cosmological dark matter only (DMONLY) simulations from

the OWLS project (Schaye et al. 2010). For a detailed description of this simulation

series see 3.2. We remind the reader that the simulation names contain strings of the

form LxxxNyyy, where xxx is the simulation box size (ranging from 25 to 400 comoving

h−1Mpc) and yyy is the cube root of the number of particles (ranging from 1283 to 5123).

Our DMONLY simulations assume the WMAP5 cosmology. However, to investigate the

dependence on the adopted cosmology, we use an extra set of five dark matter only

simulations (100 h−1Mpc box size and 5123 dark matter particles) which assume values

for the cosmological parameters derived from different releases of the WMAP and the

Planck missions. See the table 4.2 for the sets of cosmological parameters adopted in the

different simulations.

4.2 Halo mass accretion history

We begin this section by briefly reviewing the analytic model for the MAH derived in

Chapter 2, and showing how the MAH depends on cosmology and on the initial peak of

the primordial density field. Next, we extend it to estimate the halo MAH tracked from

an arbitrary redshift. Readers only interested in the concentration−mass relation model

can skip directly to §4.3.

4.2.1 Analytic model for the halo mass history

In Chapter 2, we used simple analytic arguments based on the EPS formalism and the

analytic formulation of Neistein et al. (2006), to show that the ‘shape’ of the MAH is

determined by the growth factor of the initial density pertubations. The halo MAH is

well described by an exponential in the high-redshift regime, but it slows to a power law

at low redshift, because the growth of density perturbations is halted in the dark energy

dominated era due to the accelerated expansion of the Universe. Therefore, we showed

that the expression

M(z)ΛCDM = M0(1 + z)αeβz, (4.1)

is able to capture the median halo MAH, where M0 refers to halo mass today, and α

and β are parameters that depend on M0, cosmology and the linear power spectrum.

In the case of an Einstein de Sitter (EdS) cosmology (ΩΛ,0 = 0 and Ωm,0 = 1) or an

open universe (ΩΛ,0 = 0 and Ωm,0 < 1), there is no acceleration in the expansion of the

Universe at low redshift. Then the halo mass history is simply described by an exponential

as M(z)EdS = M0eβz, where β = −1.686(2/π)1/2f(M0). For a complete description of

the model see Chapter 2.
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Figure 4.1: Halo MAH of a 1012 M⊙ halo (coloured lines) obtained from the model given by eqs.
(4.2)-(4.8), and by assuming various cosmologies as indicated in the legend. The
grey lines correspond to MAH obtained from DMONLY simulations that assume
the Planck and WMAP5 cosmologies. In the top right corner, we plot σ versus halo
mass, to show that the change in σ under different cosmologies drives the change in
the MAH.

We find that the MAHmodel can be used to calculate halo mass histories in cosmologies

other than WMAP5, and that the differences are mainly driven by the changes in σ8 and

Ωm. We show this in Fig. 4.1, where the halo MAH of a 1012 M⊙ halo (coloured lines)

was estimated for the various cosmologies, as indicated in the legend. In the top right

corner of Fig. 4.1, we plot σ versus halo mass, to show how the change in σ drives the

change in the MAH. The exception is the Planck cosmology, which has a relatively low

σ8 but a large Ωm,0 = 0.317, which raises M(z) close to the WMAP1 M(z).

The overplotted grey lines in Fig. 4.1 correspond to the MAH obtained from DMONLY

simulations that assume the Planck and WMAP5 cosmologies. In this case, we compute

the MAH of the main subhalo (that is not embedded inside a larger halo) of Friends-

of-Friends (FoF) groups (Davis et al. 1985), by tracking the virial mass of the main

progenitor at each prior output redshift. Halo virial masses and radii were determined

using a spherical overdensity routine within the SUBFIND algorithm (Springel et al.

2001) centred on the main subhalo of FoF halos. Throughout this work we define the

halo mass as the total mass within the radius r200 for which the mean internal density

is 200 times the critical density. For a more detailed description of the method used to

create merger trees, see Chapter 3.
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4.2.2 Analytic model for the MAH: high redshift prediction

The model presented in Chapter 2 is suitable for estimating halo MAHs that are tracked

from z = 0. In this section we extend this analytic model to estimate MAHs of halos of

the same halo mass that are tracked from arbitrary redshifts zi. This is shown in Fig. 4.2,

where the MAHs of 1011 M⊙ halos are obtained from DMONLY simulations (coloured

curves). The curves show the mean MAH of halos of the same mass (1011 M⊙ in this

case) that begin at zi = 0 (blue curve), 1 (dark green curve), 2 (green curve), 3 (orange

curve) and 4 (red curve). High-redshift MAHs are dominated by large accretion rates

and characterized by a pure exponential.

The reason to extend the MAH model to an arbitrary starting redshift zi is to simplify

the calculations of zi halo concentrations in the following section, where we show that

halo concentrations are related to formation times through the extended MAH model

(eq. 4.18).

We generalize the analytic model so that it describes the MAHs from any zi redshift.

Expression (4.1) can be rewritten as

M̃(z, M(zi), zi) = M(zi)(1 + z − zi)
α̃eβ̃(z−zi), (4.2)

where M̃(z, zi) denotes the MAH of a halo with mass M(zi) at redshift zi. In the above

expression, z > zi and the parameters α̃ and β̃ depend on M(zi) and redshift zi

α̃ =

[

1.686(2/π)1/2

D(zi)2

dD

dz
|z=zi

+ 1

]

f(M(zi)), (4.3)

β̃ = −f(M(zi)), (4.4)

f(M(zi)) = [σ2(M(zi)/q) − σ2(M(zi))]
−1/2, (4.5)

σ2(R) =
1

2π2

∫ ∞

0
P (k)Ŵ 2(k; R)k2dk, (4.6)

q = 4.137 × z−0.9476
f , (4.7)

zf = −0.0064(log10 M0)2 + 0.0237(log10 M0) (4.8)

+1.8837,

where D(z) is the linear growth factor, P (k) the linear power spectrum, Ŵ (k; R)

the Fourier transform of a top hat window function and R defines σ in a sphere of

mass M = (4π/3)ρm,0R3, where ρm,0 is the mean background density today. We use

the approximation of Eisenstein & Hu (1998) to compute P (k), normalized such that

σ(8h−1Mpc) = σ8. As a result, f(M0) depends on the power spectrum and halo mass. It

can be seen from eqs. (4.3-4.4) that at large zi, α̃ → 0 due to D(zi) ∝ 1.686(2/π)1/2/(1+zi)
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Figure 4.2: Median MAHs for halos of 1011 M⊙ starting from various redshifts. In both pan-
els the grey solid lines correspond to the analytic model described in §4.2.2. The
coloured curves in the left panel are the MAHs obtained from the DMONLY simu-
lations WMAP5−L025N512 and WMAP5−L050N512. The mass histories are com-
puted by calculating the median value and the 1σ error bars are determined by
bootstrap resampling the halos from the merger tree at a given output redshift.
The coloured dot dashed curves in the right panel are the MAHs obtained from the
van den Bosch et al. (2014) model.

for zi ≫ 1, indicating that the MAH is mainly described by an exponential. Table 4.1

provides a summary of the nomenclature adopted throughout this chapter. The above

equations introduce an extended analytic halo MAH model based on EPS theory that

does not require calibration against any simulation data (see Chapter 2 for more details).

The numerical values given in eqs. (4.7) and (4.8) were determined by assuming the

WMAP5 cosmology (Ωm,0 = 0.258, ΩΛ,0 = 0.742, h = 0.72, ns = 0.963, σ8 = 0.796).

In the left panel of Fig. 4.2, we compare the model given by eqs. (4.3-4.8) to various

MAHs obtained from a set of DMONLY simulations. Our analytic model is shown by grey

solid lines, where we have taken M(zi) = 1011 M⊙. The coloured curves in the left panel

correspond to the MAHs obtained from the DMONLY simulations WMAP5−L025N512

and WMAP5−L050N512. We find very good agreement between the simulation outputs

and the analytic model at all redshifts. The simulation outputs from the boxes L =

25 h−1Mpc and L = 50 h−1Mpc converge up to z = 5. At higher z, the outputs from the

L = 25 h−1Mpc simulation underestimate M(z) because the box size limits the maximum

sizes of the structures that can form at each redshift.

In the right panel of Fig. 4.2, we compare our extended analytic model with the van

den Bosch et al. (2014) model. van den Bosch et al. (2014) extracted halo mass histories

from the Bolshoi simulations (Klypin et al. 2011) and extended them below the numerical

resolution limit using EPS merger trees. Once they had obtained the MAH curves for

a large range of redshifts and halo masses, they made use of a semi-analytic model to
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transform the (average or median) MAHs, based on the Bolshoi cosmology, to other

cosmologies. Using their publicly available code, we calculate the mass history curves

for the WMAP5 cosmology for comparison with our results. We find that there is some

discrepancy at high-redshift for all the curves. The van den Bosch et al. (2014) MAH

model seems to over predict the halo mass at z > 5, most likely as a consequence of the

different halo definitions, and subtle differences in the definition of the main progenitor

(van den Bosch, private communication). Overall, there is very good agreement between

the most recent accretion history study in the literature and our model, as well as with

the simulation outputs. In §4.3 we will make use of our analytic MAH model to calculate

concentrations.

Using the extended MAH model for high redshift, we can calculate the accretion rate

of a halo at redshift z. We differentiate eq. (4.2) with respect to time and replace dz/dt

by −H0[Ωm,0(1 + z)5 + ΩΛ,0(1 + z)2]1/2, to obtain

dM̃(z, M(zi), zi)

dt
= 71.6 M ⊙yr−1

(

M̃(z, M(zi), zi)

1012M ⊙

)

(

h

0.7

)

[−α̃/(1 + z − zi) − β̃]

× (1 + z)[Ωm,0(1 + z)3 + ΩΛ,0]1/2, (4.9)

where α̃ and β̃ are given by eqs. (4.3) and (4.4), respectively. Note that the above formula

will give the accretion rate at redshift z of a halo that has mass M(zi) at redshift zi, and

mass M̃(z, M(zi), zi) at redshift z.

4.3 Concentration− mass relation

A theoretical understanding of the physical connection between concentration (the pa-

rameter that characterizes the internal structure of NFW dark matter halos) and the

initial conditions of the density field, is essential for the physical interpretation of rela-

tions like c − ν (concentration−peak height) or c − M , that have been calibrated using

cosmological simulations (e.g. Bullock et al. 2001; Neto et al. 2007; Gao et al. 2005;

Macciò et al. 2007; Duffy et al. 2008; Ludlow et al. 2013; Dutton & Macciò 2014; Diemer

& Kravtsov 2015).

It has previously been shown that concentration is determined by the halo MAH, and

that the MAH depends on the power spectrum and the adopted cosmological parameters

(Wechsler et al. 2002; Zhao et al. 2003; Ludlow et al. 2013, 2014). In this section we show,

through analytic and numerical modelling, how the concentration of dark matter halos

depends on cosmology and the power spectrum of density perturbations. Our results

imply that the halo MAH is the physical link between concentration and peak height.



90 A physical model for the concentration-mass relation

4.3.1 Formation redshift

As discussed in 4.1, halo MAHs can be used to estimate halo concentrations. Halo

concentrations reflect the mean density of the Universe at the formation redshift (Navarro

et al. 1997; Wechsler et al. 2002; Zhao et al. 2003, 2009; Ludlow et al. 2013). Therefore,

the essential link between a halo’s MAH and its internal structure is the formation redshift.

For a halo with mass M(zi) at redshift zi, we define the formation redshift to be z−2, the

redshift at which the mass of the main progenitor equals the mass enclosed within the

scale radius at z = zi,

z−2 = z[M̃(z−2, M(zi), zi) = Mr(r−2, zi)], (4.10)

(Ludlow et al. 2013). Here M̃(z−2, M(zi), zi) is the mass at z−2 of a halo with mass M(zi)

at zi, and we denote the mass enclosed within r, M(< r), as Mr. For an NFW profile

the internal mass Mr(r−2, zi) is related to the total halo mass as

Mr(r−2, zi) = M(zi)
Y (1)

Y (c[M(zi), zi])
, (4.11)

where Y (u) = ln(1 + u) − u/(1 + u), c[M(zi), zi] is the concentration at zi and M(zi) is

the total halo mass at zi. In cases where we identify halos at zi = 0 and track their mass

histories, we calculate z−2 by setting M(z−2) equal to the mass enclosed within r−2 today.

In cases where we identify halos at zi > 0, we first calculate r−2 and Mr(r−2, zi) at the

particular redshift zi, and then find z−2 by tracking the MAH (for z > zi) and equating

M̃(z−2, M(zi), zi) to Mr(r−2, zi). See Table 4.1 for a summary of the nomenclature.

Ludlow et al. (2013, 2014) and Chapter 3 showed that z−2 correlates strongly with

c, and §3.4.0.1 demonstrated that the scatter in z−2 and in the halo MAH predicts the

scatter in c. In this section we explore how the formation time − concentration relation

varies for halos identified at various redshifts.

We computed density profiles and MAHs for halos identified at redshifts zi = 0, 1, 2, 3

and 4. The density profiles were computed by fitting the NFW density profile,

ρ(r, zi) =
ρcrit(zi)δc

(cr/r200)[1 + (cr/r200)]2
, (4.12)

for each individual halo. In the above equation ρcrit(zi) = 3H2(zi)/8πG is the critical

density of the universe, δc is a dimensionless parameter related to the concentration

c = r200/r−2 by δc = 200
3

c3

Y (c) and r200 is the virial radius.

We begin by fitting NFW profiles to all halos at zi that contain at least 104 dark matter

particles within the virial radius. Throughout this work we define the virial radius as

r200, the radius for which the mean internal density is 200 times the critical density.
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Table 4.1: Notation reference.

Notation Definition

M(zi) Total halo mass at zi,
defined as M200

r200 or r200[M(zi), zi] Virial radius at zi of a halo of
total mass M(zi)

r−2 or r−2[M(zi), zi] NFW scale radius at zi

c or c[M(zi), zi] NFW concentration at zi

Mr(r, zi) M(< r), mass enclosed within r
at zi of a halo of total mass M(zi)

Mr(r−2, zi) Mass enclosed within r−2 at zi

M̃(z, M(zi), zi) Mass at z of a halo with mass
M(zi) at zi

z−2 Formation redshift, when equating

M̃(z−2, M(zi), zi) to Mr(r−2, zi)
〈ρ〉(< r−2, zi) Mean density within r−2 at zi

ρcrit,0 Critical density today
ρcrit(zi) Critical density at zi

Then, for each halo, all particles in the range −1.25 ≤ log10(r/r200) ≤ 0 are binned

radially in equally spaced logarithmic bins of size ∆ log10 r = −0.078. The density profile

is then fitted to these bins by performing a least square minimization of the difference

between the logarithmic densities of the model and the data, assuming equal weighting.

The corresponding mean enclosed mass, Mr(r−2, zi), and mean inner density at r−2,

〈ρ〉(< r−2, zi), are found by interpolating along the cumulative mass and density profiles

from r = 0 to r−2 = r200/c, where c is the concentration from the fit of the NFW halo.

Then we generate merger trees for these halos and by interpolation we determine the

redshift z−2 at which M̃(z−2, zi) = Mr(r−2, zi).

In order to obtain robust estimates and to test whether the c − M relation includes

an upturn in the median concentrations of massive halos (Prada et al. 2012; Dutton &

Macciò 2014; Diemer & Kravtsov 2015), we only consider ‘relaxed’ halos. We define

relaxed halos as those halos for which the separation between the most bound particle

and the centre of mass of the Friends-of-Friends halos is smaller than 0.07Rvir (following

Macciò et al. 2007, Neto et al. 2007 and Duffy et al. 2008), where Rvir is the radius within

which the mean density is ∆, as given by Bryan & Norman 1998, times the critical density.

Our relaxed sample contains 2425 halos at z = 0, 726 halos at z = 1, 226 halos at z = 2

and 78 and 20 halos at z = 3 and z = 4, respectively.

The left panel of Fig. 4.3 shows the mean density within the NFW scale radius, r−2,

at redshift zi. The median values of 〈ρ〉(< r−2, zi) follow the best-fitting relation

〈ρ〉(< r−2, zi) = 200
c[M(zi), zi]

3Y (1)

Y (c[M(zi), zi])
ρcrit(zi), (4.13)



92 A physical model for the concentration-mass relation

Figure 4.3: Left panel: mean density within the NFW scaled radius, 〈ρ〉(< r−2), at zi against
the critical density of the universe at the formation time, ρcrit(z−2). Each dot in the
panel corresponds to an individual relaxed halo identified at zi and coloured by mass
according to the colour bar at the top of the plot. The star symbols show the median
values of the sample at zi as indicated by the legend in logarithmic mass bins of width
δ log10 M = 0.4. The solid line shows the best linear fit to the ρcrit(z−2)−〈ρ〉(< r−2)
relation. Right panel: formation redshift against concentration. The solid lines show
the c−z−2 relations given by equation (4.16) for various zi as indicated in the legend
of the left panel. The star symbols correspond to the median values of the samples
in logarithmic mass bins of width δ log10 M = 0.4 and are colour coded by zi. The
grey areas show the scatter in z−2.

expressed as a function of the critical density of the Universe at z−2,

ρcrit(z−2) = ρcrit,0[Ωm,0(1 + z−2)3 + ΩΛ,0], (4.14)

where ρcrit,0 = 3H2(z = 0)/8πG. Note that densities along both the x− and y−axes

are expressed in units of the critical density at zi. Each dot in the panel corresponds to

an individual relaxed halo identified at zi and coloured by mass according to the colour

bar at the top of the plot. The star symbols show the median value of the sample in

logarithmic mass bins of width δ log10 M = 0.4 and are coloured by zi as indicated in the

legendii.

At each redshift zi, the ρcrit(z−2) − 〈ρ〉(< r−2, zi) correlation clearly shows that halos

which collapsed earlier have denser cores.

We perform a least-square minimization of the quantity ∆2 = 1
N

∑N
j=1[〈ρj〉(< r−2, zi)−

F (ρcrit,j(z−2), A)], where j goes from 1 to the number of dark matter halos, N, at zi and

F (ρcrit,j(z−2), A) = A × ρcrit,j(z−2), to obtain the constant of proportionality, A. The

iiNote that it is possible for individual halos to appear multiple times in Fig. 4.3 (left panel). For example
a 1013 M⊙ halo at z = 0, has a total mass of ∼ 1012.2 M⊙ at z = 2, therefore the halo will be included
in the ρcrit(z−2) − 〈ρ〉(< r−2, zi) relation at zi = 0 but also at zi = 2.
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solid line corresponds to the best-fit to the ρcrit(z−2) − 〈ρ〉(< r−2, zi) relation, and we

find (in agreement with Ludlow et al. 2014) that the average relation

〈ρ〉(< r−2, zi)

ρcrit(zi)
= A × ρcrit(z−2)

ρcrit(zi)
(4.15)

is maintained through time with A = 887 ± 36, where the 1σ error was obtained from

the least squares fit.

Using eqs. (4.13) and (4.14) we can rewrite this relation as

c[M(zi), zi]
3Y (1)

Y (c[M(zi), zi])
=

A

200

[Ωm(1 + z−2)3 + ΩΛ]

[Ωm(1 + zi)3 + ΩΛ]
, (4.16)

The right panel of Fig. 4.3 shows the c − z−2 relation (solid lines) given by eq. (4.16) for

various zi. The star symbols correspond to the median values of the sample in logarithmic

mass bins of width δ log10 M = 0.4. The grey areas show the scatter in z−2.

4.4 Semi-analytic model for halo concentration

In this section we describe the semi-analytic model for halo concentration as a function of

halo mass and redshift. This model combines the analytic model for the halo MAH given

by eqs. (4.2-4.8) and the empirical relation between z−2 and c given by eq. (4.16).

We begin by calculating M̃(z−2, M(zi), zi) from eq. (4.2), and use the equality

M̃(z−2, M(zi), zi)

M(zi)
=

Mr(r−2, zi)

M(zi)
=

Y (1)

Y (c[M(zi), zi])
, (4.17)

which follows from eqs. (4.10) and (4.11) and is valid under the assumption that the halo

density profile follows the NFW profile, to obtain

Y (1)

Y (c[M(zi), zi])
= (1 + z−2 − zi)

α̃eβ̃(z−2−zi), (4.18)

where α̃ and β̃ are given by eqs. (4.3) and (4.4), respectively. Next, we combine eqs. (4.16)

and (4.18) to obtain the concentration, c[M(zi), zi], of a halo of total mass M(zi) at zi.

We remind the reader that throughout this work the adopted halo mass definition is M200,

and the concentrations are therefore defined as c = c200.

Fig. 4.4 shows the concentration−mass relation at z = 0 (left panel), at z = 1 (middle

panel), and at z = 2 (right panel). The dots in the panels correspond to individual

relaxed halos identified in the simulations at zi = 0, 1 and 2, whereas the star symbols

correspond to the median values in logarithmic mass bins of width δ log10 M = 0.4. The

solid line shows the c − M relation that results from the semi-analytic model described

above. We find excellent agreement between the median values from the simulations and
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Figure 4.4: Concentration−mass relations at z = 0 (left panel), z = 1 (middle panel) and z = 2
(right panel). The dots in the panels correspond to individual, relaxed halos illustrat-
ing the scatter in the relation. The simulations assume the WMAP5 cosmological
parameters and have box sizes of 400, 200, 100, 50 and 25 h−1Mpc, as indicated.
Because of resolution limits only halos in the mass ranges indicated in the top legend
were used from a particular simulation. The star symbols show the median c − M
values in logarithmic mass bins of width δ log10 M = 0.4. The solid line shows the
prediction of the c − M model obtained from the halo MAH as described in §4.3.

the c − M relation predicted by the semi-analytic model at all redshifts.

So far we have adopted the WMAP5 cosmology. In the following subsection we discuss

the dependence of our concentration-mass relation model on cosmology and extend it to

make it suitable for any values of the cosmological parameters.

4.4.1 Cosmology dependence

The adopted cosmological parameters affect the halo MAH so that the larger σ8 or Ωm,0,

the earlier halos assemble. As the formation time increases with increasing σ8 or Ωm,0

(see §2.3 and §3.4.1.1), so does concentration. Therefore, in this section, we analyse how

the change in cosmology affects our concentration-mass relation model.

Our c−M model relies on the halo MAH model, which we showed in §4.1 to be suitable

for any cosmology. However, our semi-analytic model for halo concentration also relies

on the formation redshift through the best-fitting relation given by eq. (4.15),

〈ρ〉(< r−2, zi)

ρcrit(zi)
= A × ρcrit(z−2)

ρcrit(zi)
,

where A depends on cosmology (A = 887 for WMAP5).

We investigate the cosmology dependence of A by following the analysis done in §4.3.1

and using the simulations with different cosmologies listed in Table 4.2. We calculate the

best-fitting 〈ρ〉(< r−2, zi) − ρcrit(z−2, zi) relation to obtain the parameter Acosmo, where
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Table 4.2: Cosmological parameters.

Simulation Ωm ΩΛ h σ8 ns

DMONLY−WMAP1 0.25 0.75 0.73 0.90 1.000
DMONLY−WMAP3 0.238 0.762 0.73 0.74 0.951
DMONLY−WMAP5 0.258 0.742 0.72 0.796 0.963
DMONLY−WMAP9 0.282 0.718 0.70 0.817 0.964
DMONLY−Planck1 0.317 0.683 0.67 0.834 0.962

cosmo is WMAP1, WMAP3, WMAP9 or Planck. We found that if we keep A = 887

fixed when computing the c−M relations for cosmologies other than WMAP5, we obtain

relations that are in very good agreement with the various relations in the literature.

However, we obtain even better agreement with the simulations when we let A vary

slightly with cosmology. We found that AWMAP1 = 853, AWMAP3 = 850, AWMAP9 = 950

and APlanck = 880, reproduce the c − M relations best. For a calculation of c − M

relations in cosmologies other than the ones listed above, we recommend the reader to

set A = 887 fixed.

It is important to note that if the A parameter is in fact cosmology dependent then

halos which formed at different formation times (e.g. z−2,cosmo1 and z−2,cosmo2), but that

correspond to the same background density (ρcrit(z−2,cosmo1) = ρcrit(z−2,cosmo2)), will

have different concentrations (ccosmo1 6= ccosmo2). This implies that other factors affect

the dark matter halo density profiles, and that the halo MAH alone is not sufficient for

predicting concentrations.

4.4.2 Impact of relaxedness on the c − M relation

Several recent studies (Klypin et al. 2011; Prada et al. 2012; Dutton & Macciò 2014;

Diemer & Kravtsov 2015) have found that the c − M relation flattens at high redshift

and exhibits an ‘upturn’ at the high-mass end, meaning that the concentration increases

with halo mass for the most massive halos. In this section we investigate whether this

interesting behavior is seen in our semi-analytic model or in the simulation outputs.

Our model does not predict an upturn. The model relates c to the MAH via the

formation redshift, z−2 (see Fig. 4.3, right panel), which decreases with halo mass,

meaning that more massive halos are less concentrated because they formed more recently.

If c were to increase with halo mass, then high-mass halos would have to form earlier

than low-mass ones, at a point when the Universe was denser. This behavior is neither

seen in our simulations (see Fig. 4.1, coloured lines), as we only consider relaxed systems,

nor predicted by EPS theory, because it would be antihierarchical for such systems.

To investigate further, we use the simulation outputs to calculate concentrations by

fitting NFW profiles to halos that are resolved with at least 104 particles within the virial
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Figure 4.5: Concentration−mass relation at z = 0, 1, 2, 3 and 4 under the WMAP5 cosmology
for the relaxed halo sample (left panel) and the full sample (middle panel). The
star symbols indicate the median concentrations in logarithmic mass bins of width
δ log10 M = 0.25 at z = 0 and z = 1, and δ log10 M = 0.30, 0.40 and 0.50 at z = 2,
3 and 4, respectively. Only bins containing at least 10 halos are shown. The error
bars show the 1σ confidence limits. The dashed lines correspond to the best-fitting
power-laws to the star symbols. In the left panel, the solid grey line shows the c−M
relation predicted by the semi-analytic model. The right panel shows the fraction of
relaxed halos, with respect to the complete sample, for each mass bin and redshift.
The inclusion of unrelaxed halos results in a flattening of, or even an upturn in, the
c − M relation at high redshift.

radius, and for which the convergence radiusiii (Power et al. 2003) is smaller than the

minimum fit radius of 0.05 times the virial radius. In addition, we consider two halo

samples. A relaxed halo sampleiv and a full halo sample. When considering only relaxed

halos, as we have done so far, we find that we restrict our halo sample to around 80% of

the total at z = 0, 65% at z = 1, 55% at z = 2, 50% at z = 3 and 43% at z = 4.

Fig. 4.5 shows the concentration-mass relation (at various z) of the relaxed sample (left

panel) and the full sample (middle panel). These panels show the median value of the

concentration (star symbols) in logarithmic mass bins of width δ log10 M = 0.25 at z = 0

and 1, and δ log10 M = 0.30, 0.40 and 0.50 at z = 2, 3 and 4, respectively. We increase the

bin size with redshift so that each bin at a fixed mass contains on average approximately

the same number of halos. For each bin the 1σ error bars were determined by bootstrap

resampling the halos. Only bins containing at least 10 halos are shown. The dashed lines

correspond to the best-fitting power-laws to the star symbols. In addition, the left panel,

shows the c − M relations predicted by the semi-analytic model in the solid grey lines.

The middle panel shows a strong flattening and upturn in the c − M relation at high z,

in agreement with Muñoz-Cuartas et al. (2011) and Prada et al. (2012). However, this

iiiThe convergence radius is defined such that the two−body dynamical relaxation time-scale of the
particles is similar to the age of the universe. For more details see Power et al. (2003) or Duffy et al.
(2008).

ivAs proposed by Neto et al. (2007), relaxed halos are defined as those halos for which the separation
between the most bound particle and the centre of mass of the Friends-of-Friends halo is smaller than
0.07 times the virial radius.
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upturn is not seen for the relaxed sample. Thus, we conclude that the previously seen

upturn results from the inclusion of unrelaxed halos, in agreement with Ludlow et al.

(2012). We show the fraction of relaxed halos (with respect to the total sample) for each

mass bin and redshift in the right panel of Fig. 4.5. We find that the relaxed fraction

tends to decrease towards high mass and redshift.

Our results suggest that the dynamical state of dark matter halos should be considered

when analysing the parameters that describe the halo internal structure, because the

density profiles of unrelaxed halos are poorly captured by the NFW fitting formula (e.g.

Neto et al. 2007). Because halo concentrations are clearly affected by transient departures

from equilibrium, we only consider relaxed halos in the remainder of this work.

4.4.3 Comparison with previous studies

In this section we compare the c − M relations of the most recent studies on dark matter

halo concentrations, van den Bosch et al. (2014) (hereafter, vdB14), Diemer & Kravtsov

(2015) (hereafter, DK14), Dutton & Macciò (2014) (hereafter, DM14) and Ludlow et al.

(2014) (hereafter, L14), with the model presented in this work.

vdB14 used the c − M relation of Zhao et al. (2009) (obtained from fits of a full halo

sample from numerical simulations) and adjusted the parameters by fitting it to the

c − M relation of the full halo sample from the Bolshoi simulations. vdB14 assumed the

Bolshoi cosmology (consistent with WMAP7, Komatsu et al. 2011), but they made use

of a semi-analytic model to scale their model to any cosmology. We assume the Planck

cosmology and use the publicly available code of vdB14 to calculate their c − M relation.

DK14 obtained a concentration model given by a best-fit seven parameter function of

peak height (ν) and slope of the linear power spectrum. They considered their full halo

sample and extended their model to make it suitable for any cosmology. Finally, DM14

followed the evolution of the concentration of relaxed dark matter halos from a series of

N -body simulations that assumed the Planck cosmology. DM14 fitted a power-law to

the c − M relation and restricted their analysis to relaxed halos only.

The left panel of Fig. 4.6 shows a comparison of our c − M model (solid lines) to the

model of vdB14. To compare with vdB14, we predicted the concentrations using the

analytic expression for the MAH assuming the Planck cosmology (shown in Fig. 4.1) and

a z−2 − c relation with a constant of proportionality of 850 instead of the value 887 used

for the WMAP5 cosmology (see §4.4.1 for a discussion of the cosmology dependence of

our model). We find broad agreement with the relation of vdB14 only at z = 1 and 2. In

their work, van den Bosch et al. (2014) used the Zhao et al. (2009) model which assumes

that c never drops below 4 at high redshift.

The middle-panel of Fig. 4.6 shows the DK14 c − M relation calculated assuming the

Planck cosmology. As they included their entire sample of halos for their c − ν relations,
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Figure 4.6: Comparison of the c − M relation predicted by our model (solid lines) with the
relations of van den Bosch et al. (2014) (left-panel), Diemer & Kravtsov (2015)
(middle-panel) and Dutton & Macciò (2014) (right-panel). Note that Dutton &
Macciò (2014) consider only relaxed halos for their best-fitting model and fit their
model in the halo mass range 1010 − 1015 M⊙, whereas Diemer & Kravtsov (2015)
and van den Bosch et al. (2014) use their full halo sample and fit their model in halo
mass range 1010 − 1015 M⊙ and 1011 − 1015 M⊙, respectively.

they obtained an upturn at the high-mass end at all redshifts. We find that our model

predicts concentrations that are a factor of 1.2 larger just before the high-mass upturn.

Finally, the right-panel of Fig. 4.6 shows reasonable agreement between our model and

the Dutton & Macciò (2014) c − M relation for z = 0, 1, 2 and 3 although the results

diverge at low masses. In their work, DM14 fitted a power-law, c ∝ Mα, to the c − M

relation at all redshifts, and found that the slope, α, increases from −0.1 at z = 0, to

0.03 at z = 5. As they restricted their halo sample to relaxed halos, they did not obtain

a significant upturn at the high-mass end of the c − M relation.

Fig. 4.6 shows that the physically motivated model presented in this work yields c−M

relations that are generally in agreement with previous results. However, the important

improvement with respect to previous works is that we are presenting a physical ana-

lytic model that can then be extrapolated to very low-masses, and is suitable for any

cosmology.

The model for dark matter halo concentrations presented in this work strongly relies

on the relation 〈ρ(r−2)〉 − ρcrit(z−2), which supports the idea that halos grow inside-out.

This relation was introduced in Ludlow et al. (2013) and explored in L14, who recently

presented a related model for the concentration-mass relation. In their work, L14 used the

average MAHs from van den Bosch (2002a) and Zhao et al. (2009) that begin at zi = 0v.

They fitted the halo MAHs, written as M(ρcrit), with the NFW profile expressed in

terms of the enclosed density. They looked for a correlation between the concentration

parameter cMAH, that results from an NFW fit to the halo MAH, and the concentration

vL14 c − M model used MAHs from van den Bosch (2002a) and Zhao et al. (2009) to show specific
examples on how to construct a c(M, z) relation for a given MAH, but any MAH model can be used.
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parameter of the halos density profile, cNFW, and used the best-fitting relation to predict

cNFW from cMAH. L14 and this work use the same formation redshift definition to connect

concentrations with halo MAHs. L14 used the 〈ρ(r−2)〉 − ρcrit(z−2) relation to find the

cMAH − cNFW relation, whereas in this work we used the analytic MAH model to define

formation redshifts and used the 〈ρ(r−2)〉 − ρcrit(z−2) relation to predict concentrations.

Although there is good agreement between L14 and our c − M relation at z = 0, there

are differences in the relations at high−z, e.g. a factor of 1.2 difference between the

concentrations of a 1010h−1M⊙ halo at z = 2 (c ∼ 5.25 versus cL14 ∼ 6.3), and a factor

of 1.58 for a 105h−1M⊙ halo at z = 2 (c ∼ 7.95 versus. cL14 ∼ 12.58), for the WMAP5

cosmology. Those differences are mainly due to the different MAH models. Since the

〈ρ(r−2)〉 − ρcrit(z−2) relation is essentially equivalent to the cMAH − cNFW relation, we

expect L14 and our semi-analytic model to give consistent results if the same MAH

model is used. We believe however that we have improved upon the L14 c − M model

by combining the 〈ρ(r−2, zi)〉 − ρcrit(z−2, zi) relation with an analytical MAH model,

M(z, zi), that begins at any redshift zi, and allows a detailed analysis of the redshift

dependence of the c(M, z) relation for relaxed halos. Another important difference is the

tentative evidence for a cosmology dependence in the 〈ρ(r−2, zi)〉 − ρcrit(z−2, zi) relation

(for a discussion see §4.4.1).

4.4.4 Extrapolation to low halo masses and high redshifts

Because our semi-analytic model for halo concentration is physical, rather than a purely

empirical fit to the simulation results, we can use it to extrapolate beyond the mass and

redshift ranges spanned by our simulations, assuming that the z−2 − c relation given by

eq. (4.16) holds. Fig. 4.7 shows the predicted concentration-mass relation for a wide

range of halo masses (log10 M/ M⊙ = [−2, 16]) and redshifts (z = 0 − 20). The dashed

lines correspond to the high-mass power-law c − M relations at low redshift. These are

included to aid the comparison of the slopes of the c − M relation in the high- and low-

mass regimes. There is a clear ‘break’ in the z = 0 c − M relation. For M > 1012 M⊙

concentration scales as c ∝ M−0.083, whereas at M < 109 M⊙ it scales as c ∝ M−0.036.

The change of slope around these halo masses is substantial up to z = 3 − 4. However, at

z > 4 there is no ‘break’ in the c−M relation. In §4.5 we provide a tentative explanation

for the physical origin of the break in the c − M relation.

We provide fitting functions for the c − M relation in the high-z and low-z regimes.

The following expression is suitable for the low-redshift regime (z ≤ 4) and at all halo

masses,
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Figure 4.7: Predicted concentration − mass relation for the WMAP5 cosmology over a wide
range of halo masses (log10 M/ M⊙ = [−2, 16]) and redshifts (z = 0 − 20). The solid
lines correspond to our c − M model obtained from the halo MAH as described in
§4.3. The lines are coloured as a function of redshift as indicated. The dashed lines
correspond to power-law fits to the high-mass c − M relation.

log10 c = α + β log10(M/ M⊙)[1 + γ(log10 M/ M⊙)2], (4.19)

α = 1.62774 − 0.2458(1 + z) + 0.01716(1 + z)2,

β = 1.66079 + 0.00359(1 + z) − 1.6901(1 + z)0.00417,

γ = −0.02049 + 0.0253(1 + z)−0.1044.

In the high-redshift regime the c − M relation can be fitted using only two parameters.

The following expression is suitable for z > 4 and at all halo masses,

log10 c = α + β log10(M/ M⊙), (4.20)

α = 1.226 − 0.1009(1 + z) + 0.00378(1 + z)2,

β = 0.008634 − 0.08814(1 + z)−0.58816.
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Figure 4.8: Top left panel: evolution of the concentrations of halos that at z = 0 have masses
of M0 = 106, 108, 1010, 1012 and 1014 M⊙, as indicated in the legends. Top right
panel: MAHs of halos of the same masses as in the left panel. Bottom panel: c − M
evolution (solid lines) of halos whose c(z) and M(z) are shown in the left and middle
panels, respectively. The dashed curves show the concentration−mass relation at
various redshifts z.
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The above fitting functions have been calculated assuming the WMAP5 cosmology.

Appendix A provides a series of best-fitting relations for the Planck cosmology, as well

as a short discussion of the cosmology dependence of the c − M relation presented in

this work. In addition, Appendix A provides a description of a simple code (available for

download in IDL and Python) that computes concentrations, MAHs and accretion rates

as a function of redshift for any cosmology.

The c − M model presented in this work predicts a concentration of c = 3 for micro-

halos of 10−7 M⊙ at z = 31, in agreement with simulations of microhalo formation from

Anderhalden & Diemand (2013) and Ishiyama (2014). In their work, Anderhalden &

Diemand (2013) compared the empirical c − M relations from Bullock et al. (2001) and

Macciò et al. (2008) to their simulation outputs, and concluded that extrapolating simple

power-law approximations to typical microhalo scales results in an overestimation of c by

up to a factor of 10 at low−z. We also find large differences between extrapolations of the

high-mass power-law fits to low-masses and the predictions of our physical model, as can

be seen by comparing the dashed and solid lines in Fig. 4.7. This impacts calculations

of the dark matter (DM) annihilation signal boost (see e.g. Sánchez-Conde & Prada

2014) and the power from DM annihilation (see e.g. Mack 2014), which make extensive

use of c − M relations at various redshifts. In §4.6 we analyse this issue in more detail

by calculating the power from DM annihilation, assuming either the Duffy et al. (2008)

c − M relation (an empirical power-law fit for high halo masses) or the c − M relation

from this work.

4.5 Evolution of the concentration

In this section we use our semi-analytic model to investigate the evolution of concentration

and the effects that determine the slope of the c − M relation. The top left panel of

Fig. 4.8 shows the evolution of the concentration of halos that have masses of M0 =

106, 108, 1010, 1012 and 1014 M⊙ at z = 0. The middle panel shows the corresponding

halo MAHs normalized to the final halo mass at z = 0 (M0). We computed c(z) and

M(z) following the models described in §4.3 and §4.2.2, respectively.

In Chapter 3 we used EPS theory to show that the MAH of all halos can be described by

the expression M(z) = M0(1 + z)αeβz, where the exponential is due to the fast growth at

high−z and the power-law due to the slow growth at low−z. In addition, the parameters

α and β depend on halo mass. As a result, MAHs of halos larger than 1011 M⊙ are mainly

characterized by an exponential growth, whereas lower-mass halos exhibit a MAH closer

to a power-law, as can be seen in the top right panel of Fig. 4.8.

Comparing the coloured curves in the top left and right panels of Fig. 4.8, we see

an interesting relation between the evolution of c and the corresponding MAH. Dark

matter halos with a small growth rate are appear to contract, and so their concentrations
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grow rapidly. This can be understood as follows. At low redshift, during the dark energy

dominated epoch, M(z) of low-mass halos is characterized by a power-law (see Chapter 2).

During this epoch, there is a drop in the accretion and merger rates of small halos, and

the halo mass increases due to the evolution of the reference density used in the spherical

overdensity definition of the halo (ρcrit(z) in this case). This so-called pseudo-evolution

of the halo mass is thus driven by the halo mass definition rather than the accretion of

new material (see Diemer et al. 2013 and references therein). The pseudo-evolution of the

halo mass gives the impression that concentrations are increasing because of contraction

of the bound cores (Tasitsiomi et al. 2004; Zhao et al. 2003; Lu et al. 2006; Li et al.

2008; van den Bosch et al. 2014), when in fact the core radius remain constant. Indeed,

the evolution of the c − M relation has been shown to be sensitive to the definition of

halo mass (e.g. Duffy et al. 2008). If we assume that r−2 is constant in the redshift

range z = 0 − 1, then the increase in r200 due to the drop in ρcrit gives the approximate

increase in the concentration values. We find c(z=0)
c(z=1) = r200(z=0)

r200(z=1) =
(

ρcrit(z=1)
ρcrit(z=0)

)1/3
∼ 1.4,

in agreement with the increase in concentration of a M0 = 106 M⊙ halo.

In the high-redshift regime (z ≫ 1, matter-dominated epoch), the halo MAH is mainly

characterized by exponential growth. During this time, concentrations grow by a factor

of 2 (from z = 8 to z = 2) for a M0 = 106 M⊙ halo, decreasing to a factor of 1.08

(from z = 8 to z = 2) for a M0 = 1014 M⊙ halo. The pseudo-evolution of the halo mass

is negligible in comparison with the high accretion rates, and the core radius increases

simultaneously with the virial radius, hence the concentration hardly grows.

In the case where the halo mass history is characterized by exponential growth at all

z, representing the situation of a universe with no dark energy but Ωm ≤ 1, we find

that concentrations do not reach such large values at z = 0. We thus conclude that the

evolution of the concentration is indirectly affected by the accelerated expansion of the

Universe through the MAH and the halo mass definition.

Next, we analyse how the evolution of the concentration determines the change in slope

of the c − M relation. The bottom panel of Fig. 4.8 shows c − M relations at various

redshifts (dashed lines), and the c − M evolution of halos with M0 = 106, 108, 1010, 1012

and 1014 M⊙ (solid lines). From this figure we see that the ‘break’ in the low-redshift

c−M relation that occurs at M ∼ 1011 M⊙ is produced by the change in the halo MAH.

As mentioned, M(z) changes from being dominated by exponential growth for high-

mass halos, to power-law growth for low-mass halos. It is natural to ask why the break

in M(z) (and consequently in c − M) occurs at ∼ 1011 M⊙. The answer is given by

the rms of the linear theory density perturbation field, σ, that determines at which halo

mass M(z) changes from power-law dominated to exponential dominated. Since σ ≫ 1

at low masses (≪ 1011 M⊙) and σ ≪ 1 at high masses (≫ 1011 M⊙), the low values of

σ at high masses increase the value of the β parameter in the exponential function of
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Figure 4.9: Left panel: Concentration-mass relation at various z (z = 0 − 10, top to bottom)
from this work (blue solid lines) and from Duffy et al. (2008) (red dashed lines).
At z = 10 and at a mass-scale of 1 M⊙ concentrations of Duffy et al. (2008) are a
factor of 10 larger than concentrations predicted by this work, and a factor of 40 for
a 10−9 M⊙ halo. Middle panel: DM annihilation power per hydrogen nucleus as a
function of redshift. The dashed line corresponds to the smooth component of the
power and the dot-dashed lines to the structure component. The solid lines show
the sum of the two components (structure+smooth). The red lines correspond to
the power assuming the Duffy et al. (2008) c − M relation, whereas the blue lines
correspond to the power assuming the c − M relation from this work. Right panel:
as the middle panel, but showing the effective DM energy density as a function of
redshift.

the M(z) model, and thus M(z) is mostly dominated by the exponential growth. As a

result, higher mass halos increase their mass faster, their inner cores increase with the

virial radius, and their concentrations do not grow as rapidly. The different growth rate

of the concentrations produced by the change in the halos MAH, creates the ‘break’ in

the c − M relation.

Therefore, the break can be understood as being produced by the varying power in the

density perturbations through the halo MAH, where the MAH of low-mass halos at z < 1

is mostly driven by pseudo-evolution. The break is less prominent at z > 1, because at

higher redshifts M(z) is mostly exponential for all halo masses (see eq. 4.3, α̃ → 0 for

zi > 0 due to the growth factor and Fig. 4.2).

4.6 Implications for the dark matter annihilation signal

Dark matter (DM) particles are predicted to self-annihilate into Standard Model particles,

thus injecting energy into the surrounding medium (e.g. Furlanetto et al. 2006). In this

section we calculate the DM annihilation rate per unit volume produced by a smooth

density field of DM (dominant before structure formation) and by cosmic structures (halos

and microhalos). We separate DM into a smooth and structure component because the

spatial distribution of mass is almost completely smooth at very early cosmic times.

Later gravitational instability causes overdensities to grow, until micro DM halos form.
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We follow Cirelli et al. (2009) and Mack (2014) in this calculation, and obtain the DM

energy density and mean power from DM annihilation, assuming the physical c − M

relation from this work and from extrapolations of the fits to simulations from Duffy

et al. (2008). Below we briefly describe the calculation of the DM annihilation rate

produced by cosmic structures.

The DM annihilation rate per unit volume results from the sum of two parts, a structure

contribution and a smooth contribution. The smooth contribution, dominant before

structure formation, z & 100, can be written as

Rsmooth(z) =
〈σν〉
2m2

χ

ρ2
DM,0(1 + z)6.

Where mχ is the mass of the DM particle, 〈σν〉 the self-annihilation cross section, and

ρDM,0 the smooth DM density today, ρDM,0 = ΩDM,0ρcrit,0.

The DM annihilation rate per unit volume due to halos, R, is given by

R(z) =
〈σv〉
2m2

χ

∫

dM
dn

dM
(z, M)(1 + z)3

∫

dr4πr2ρ2(r, M). (4.21)

Here mχ is the mass of the dark matter particle and 〈σv〉 is the average annihilation cross

section, which we assume to be 100 GeV and 10−26cm3s−1, respectively (e.g. Aprile &

et al. 2012). For the halo mass function, dn
dM (z, M), we adopt the expression from Reed

et al. (2007). For ρ(r, M) we use the NFW density profile. We use M200 as the halo mass

definition.

Next, we calculate the effective DM density from structure formation, defined as

ρeff
DM(z) ≡ ρDM,0(1 + z)3Ri(z), (4.22)

Ri(z) ≡
(

2m2
χ

〈σv〉R(z)

)1/2

, (4.23)

where ρDM,0 is the average DM density today, ρDM,0 = ΩDM,0ρcrit,0, with ΩDM,0h2 = 0.11.

In this calculation we assume the WMAP5 cosmology in order to facilitate a comparison

with models using the extrapolation of the Duffy et al. (2008) power-law fit to the c − M

relation predicted by WMAP5 N -body simulations.

Similarly, we calculate the averaged volume power, per hydrogen nucleus, produced

from DM annihilation events as

P (z) = 2mχc2 R(z)

nH(z)
, (4.24)
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with nH(z) = Ωb,0ρcrit,0(1 − Yp)(1 + z)3/mH,
vi the number density of hydrogen.

4.6.1 Implications

Several of the models that have been used to predict the DM annihilation signal (see e.g.

Pieri et al. 2008; Lavalle et al. 2008; Pinzke et al. 2011) have extrapolated c−M relations,

obtained from power-law fits to simulation results, to mass far below the resolution limit

of the simulations. These power-law extrapolations assign huge concentrations to the

smallest halos, thus increasing the DM annihilation power. In this section we explore

how our physically motivated c − M relation, which flattens towards low-masses at low-

redshift, affects the DM annihilation power when comparing it to the power calculated

using an extrapolation of the Duffy et al. (2008) power-law c − M relation (the results

are similar for other published power-law fits to the c − M relation from simulations).

The left panel of Fig. 4.9 shows a comparison between the concentration-mass relations

at various redshifts (z = 0 − 10) from this work (in blue solid lines) and of Duffy et al.

(2008) (in red dashed lines). For z = 0 there is good agreement at the high-mass end be-

tween both relations. However, at z = 10 and at a mass-scale of 1 M⊙, the concentrations

of Duffy et al. (2008) are a factor of 10 larger than the concentrations predicted by this

work. For mass-scales of 10−9 M⊙ the difference is a factor of 40. In the middle and right

panels of Fig. 4.9 we investigate the effects of these different c − M relations, showing

the DM annihilation power per hydrogen nucleus and the effective DM energy density,

respectively, as a function of redshift. In the middle panel, the dashed line corresponds

to the smooth DM component of the power whereas the dot-dashed lines correspond to

the structure component. The solid line shows the sum of the two components (struc-

ture+smooth). In each case the red lines correspond to the power assuming the Duffy

et al. (2008) c−M relation, whereas the blue lines correspond to the power assuming the

c−M relation from this work. The change in c−M affects the normalization of the power

as well as the redshift at which structures begin to dominate. Lower concentrations result

in lower central densities. Since the annihilation rate per unit volume, R, scales as ρ2, it

is clear that R should decrease accordingly. At z = 0, the DM annihilation power that

assumes the c − M relation predicted by this work is 2 orders of magnitude lower than

the power obtained by extrapolating the Duffy et al. (2008) c − M relation. In addition,

the higher concentrations predicted by the Duffy et al. (2008) c − M relation imply that

halos dominate the power over the smooth DM density component at higher redshifts.

Adopting the c − M relation from this work results in the power from structures starting

to dominate at z ≈ 50 rather than at z ≈ 85 (in agreement with Mack 2014; Ng et al.

2014). This lower redshift of structure formation dominating over the smooth component

viΩb,0 is the present day baryon density parameter, Yp = 0.24 the primordial mass fraction of helium
and mH the proton mass.
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Figure 4.10: Distribution of particles within r200. We show the particle distribution of two
different halo samples, the first sample contains halos of 1015 M⊙ identified at
zi = 0 (solid lines) and the second sample contains halos of 1014 M⊙ identified at
zi = 1 (dashed lines). The solid grey line corresponds to a NFW density profile with
concentration c = 4 and the vertical dashed line to the corresponding r−2 radius.
The different colours indicate the redshift (zaccr) during which the particles were
accreted onto the halos (note that the same colour corresponds to different redshift
ranges for different zi).

could have important implications for searches of the ‘Dark Ages’ by radio telescopes (e.g.

Pritchard & Loeb 2012).

4.7 Discussion

Dark matter halo concentrations have recently been the subject of extensive analysis due

to the controversial reports of an upturn at the high-mass end of the relation (Prada

et al. 2012; Muñoz-Cuartas et al. 2011; Diemer & Kravtsov 2015; Klypin et al. 2014).

However, the semi-analytic model for dark matter halo concentrations presented in this

work does not predict such an upturn. In this section we review the main assumptions

that the model relies on and discuss the plausibility of the existence of the upturn.

First, the model assumes that the halo density profile is described by the NFW pro-

file at all times. Although it is known that the Einasto (Einasto 1965) profile is more

accurate than the NFW profile (Gao et al. 2008), it has an extra ‘shape’ parameter that

complicates the fitting procedure and affects the concentration. Also, the residuals from

the systematic deviations from the NFW shape are generally smaller than 10% and the

NFW concentrations only differ by 10 − 20% from Einasto fit and the velocity profile

fit (as recently discussed by Dutton & Macciò 2014 and Klypin et al. 2014). We thus

conclude that using the NFW profile to predict densities is not a major determinant in
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the model.

Secondly, the model depends on the calibration of the ρcrit(z−2) − 〈ρ〉(< r−2) relation,

which implies that halo formation is an inside out process, where the central part of

a dark matter halo (contained within r−2) forms first, and later accretion and mergers

increase the mass and size of the halo without adding much material to its inner regions

(Huss et al. 1999; Wang & Abel 2007). We test the assumption of ‘halo formation’ of our

model. We analyze the distribution of particles within r200, and differentiate the particles

according to the period of time during which they were accreted. Fig. 4.10 shows the

radial distribution of particles of two different halo samples. The first sample contains

halos of 1015 M⊙ identified at zi = 0 (which are formed at z−2 ≈ 1) and the second sample

contains halos of 1014 M⊙ identified at zi = 1 (formed at z−2 ≈ 2). We analysed halos of

different masses but focused on massive halos, because their large radial velocities makes

them more likely to contain recently accreted particles in their inner regions, and they

are located in the upturn in the c − M relation.

Fig. 4.10 shows the NFW density profile (in grey solid line) and the r−2 radius (in

vertical dashed line) for a concentration of c = 4. The figure also shows the distribution

of particles at zi = 0 (solid coloured lines) and at zi = 1 (dashed coloured lines). The

different colours indicate the redshift (zaccr) during which the particles were accreted onto

the halos. The blue lines show that recently accreted particles are distributed around

r200 and that only a tiny fraction (< 2% of the total, in the two cases), reside in the inner

parts of the halo. In the case of the distribution of particles at zi = 0, 2.5% of the total

particles are in regions within r−2 after being accreted during zaccr = 0.25 − 0.5, and

4.5% during zaccr = 0.5 − 1. The same behavior is observed in halos of different masses

identified at higher redshifts. We find that 8% of all particles accreted after the halo

has formed are in the center, not enough to significantly alter the mass within r−2 so as

to increase concentration. We then find the halo formation assumption that the model

relies on to be valid.

Finally, in the calibration of the ρcrit(z−2) − 〈ρ〉(< r−2) relation, we only consider

relaxed halos. The selection conditions generally used to differentiate relaxed halos from

unrelaxed (Macciò et al. 2007; Neto et al. 2007) have recently been revisited by Klypin

et al. (2014). These conditions include the virial parameters (2K/|W | − 1, where K and

W are the kinetic and potential energies), the offset parameter Xoff (distance between

the potential minimum and the center of mass), and the spin parameter. In their work,

Klypin et al. (2014) argued that the virial equilibrium condition is too simplistic and

needs to include the effects of the surface pressure and external forces. They applied

these corrections to the virial parameters and selected halos that had previously been

rejected. As a result, they obtained an upturn in the high-mass end of the c−M relation

and claimed that the large concentration of massive halos is due to their infall velocities,
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which are more radial and result in deeper penetration of infalling mass into the halo that

reaches the inner parts. In this work we selected relaxed halos using only the condition

that Xoff < 0.07 following Duffy et al. (2008) and Neto et al. (2007), who found that

this simple criterion resulted in the removal of the vast majority of unrelaxed halos. We

did not use any additional criteria and did not find any upturn at high halo masses,

but concluded that the strong flattening of the c − M relation at high redshift is due to

unrelaxed halos (Fig. 4.5). We cannot say we disagree with Klypin et al. (2014) regarding

the relaxation conditions, because our simulations do not have sufficiently large box sizes

to model a large sample of the massive highly unrelaxed halos that likely ‘shape’ the

upturn.

4.8 Conclusion

In this chapter we have linked the concentration of a halo to its MAH. We extended

the analytic framework presented in Chapter 2 to show that the halo mass history

M̃(z, M(zi), zi) of a halo with mass M(zi) at zi can be described by

M̃(z, M(zi), zi) = M(zi)(1 + z − zi)
α̃eβ̃(z−zi),

where α̃ and β̃ are parameters that depend on M(zi) and cosmology. We have compared

the above formula to simulation outputs and the most recent empirical mass history

model from the literature (van den Bosch et al. 2014) and found generally reasonable

agreement.

Building on the work by Ludlow et al. (2014), we presented a semi-analytic model for

halo concentration as a function of halo mass and redshift. The resulting c − M relations

were tested using N -body simulations, and compared to the most recent empirical c − M

relations from the literature (van den Bosch et al. 2014; Diemer & Kravtsov 2015; Dutton

& Macciò 2014). The ‘upturn’ at high masses seen by some studies (Diemer & Kravtsov

2015; Klypin et al. 2011; Prada et al. 2012; Dutton & Macciò 2014) is not reproduced by

our physically derived model which, however, only applies to relaxed halos. We analysed

the c − M relations obtained from the numerical simulations, where we differentiated

between relaxed and unrelaxed halos. We found that the upturn is due to the inclusion

of unrelaxed halos, supporting the previous claim of Ludlow et al. (2012).

Our model predicts a change in the slope of the c − M relation at z = 0 − 3 and a

‘break’ in the z ∼ 0 c − M relation at a mass of ∼ 1011 M⊙. We analysed the evolution of

concentration and found that it increases more rapidly during the dark energy era, when

the accretion rates of dark matter halos decrease due to the accelerated expansion of the

Universe. We found that the break at a halo mass ∼ 1011 M⊙ results from the change

of the functional form of M(z), that goes from being dominated by a power-law (for
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low-mass halos) to an exponential (for high-mass halos). This change in M(z) is driven

by the rms of the linear density perturbation field. Halos with mass M ≫ 1011 M⊙, have

σ ≪ 1, are characterized by an exponential growth, and have lower concentrations as

a result. Whereas halos with mass M ≪ 1011 M⊙, have large σ, are characterized by

a power-law growth. In this last case, there is a pseudo-evolution in the halo masses

(i.e. mass growth due to the definition of the halo in terms of a overdensity criterion,

Diemer et al. 2013) and the core radius remains approximately constant, causing the

concentrations to grow. The different growth rate of the concentrations at low and high

mass produces the break in the z ∼ 0 c − M relation. This break is not so evident for

z > 1, because at higher redshifts M(z) is mostly exponential for all halo masses (α̃ → 0

for zi > 0 due to the growth factor), causing all concentrations to grow at approximately

the same rate (as seen in Fig. 4.8).

Finally, we addressed the impact of the c − M relation presented in this work on

predictions for the dark matter annihilation signal. We calculated the DM annihilation

rate from cosmic structures and compared the results obtained by extrapolating the

Duffy et al. (2008) power-law fit (which is similar to other published fits to the results of

simulations) to the rate obtained by using the c−M relation predicted by our model. We

found that the power from DM annihilation at z = 0 is 2 orders of magnitude lower than

the power obtained by extrapolating the Duffy et al. (2008) c−M relation (in agreement

with Mack 2014; Ng et al. 2014).
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On the hot halo formation

This chapter discusses the physical mechanisms that drive the formation of the hot hydrostatic

halo.

In the previous chapters we studied the formation and growth of dark matter halos, that

are essential for the condensation of gas and formation of galaxies. The latter part of this

thesis is devoted to investigating the physical state of gaseous halos and their connection

to the evolution of galaxies. Gas, unlike dark matter, is affected by the presence of

additional physical processes, such as hydrodynamical forces and radiative cooling. Most

of the cosmological gas that falls into the potential well of a dark matter halo is deviated

from its path towards the inner galaxy. When it crosses the virial radius it encounters

other gas, it shocks and is heated, or it is expelled out of the halo and eventually re-

accreted, depending on the physical state of the gaseous halo. Understanding then the

structure of the hot hydrostatic halo atmosphere, its origin and subsequent evolution,

is essential for any comprehensive theory of galaxy formation. In this chapter we use a

suite of hydrodynamical cosmological simulations to investigate the thermal properties

of gas accreting onto halos, and the hot halo formation. We analyze how the presence

of energy sources like stellar and AGN feedback impact on the evolution of the hot halo.

We then develop a semi-analytic approach to calculate a critical mass-scale above which

the hot halo forms. The model depends on the amount of hot gas in the halo as well as

on the fraction of gas that experiences a shock when crossing the virial radius. Readers

unfamiliar with this topic are encouraged to first read §1.3 for a brief description on

galaxy formation theory.
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5.1 Introduction

One of the major goals of modern galaxy formation theory is to understand the physical

mechanisms that halt the star formation process, by either removing, heating or prevent-

ing the infall of cold gas onto the galactic disc. X-ray observations suggest that for halos

hosting massive galaxies the majority of baryonic matter resides not in the galaxies, but

in the halo in the form of virialized hot gas (e.g. Lin et al. 2003; Crain et al. 2010; An-

derson & Bregman 2011). This work is devoted to investigate the formation of the hot

gaseous corona (also refereed to as ‘hot halo’ or ‘hot atmosphere’) around galaxies, that

may help to prevent the infall of gas onto galaxies, and has been suggested to explain

the observed galaxy bimodality (Dekel & Birnboim 2006).

The hot gaseous corona is produced as a result of an important heating process, that

was initially discussed by Rees & Ostriker (1977), Silk & Rees (1998), White & Rees

(1978) and White & Frenk (1991), as an attempt to explain the reduced efficiency of

star formation within massive halos. They proposed that while a dark matter halo

relaxes to virial equilibrium, gas falling into it would experience a shock depending on

the cooling time of gas at the virial radius. As long as the cooling time is smaller than

the dynamical time (or Hubble time), the infalling gas cools (typically inside a current

‘cooling radius’) and settles into the galaxy. If, on the other hand, the cooling time

exceeds the dynamical time, the gas is not able to radiate away the thermal energy that

supports it. It therefore adjusts its density and temperature quasi statically, forming a

hot hydrostatic halo atmosphere, pressure supported against gravitational collapse. If

the gas accretes supersonically (as it will do if the halo virial temperature exceeds the

temperature of the accreting gas, see Binney 1977), it will experience a shock and heat

to the virial temperature of the halo. Over the past decade, the works of Birnboim &

Dekel (2003) and Dekel & Birnboim (2006, hereafter DB06) investigated the stability

of accretion shocks around galaxies, and confirmed that a hot atmosphere forms when

the compression time of shocked gas is larger than its cooling time, occuring when halos

reach a mass scale of 6 × 1011 M⊙.

Numerical simulations showed that cold gas accreting through filaments does not neces-

sarily experience a shock when crossing the virial radius, even if the spherically averaged

cooling radius is smaller than the virial radius. Simulation-based works then concluded

that there are two modes of gas accretion, named as hot and cold accretion, that are

able to coexist in high-mass halos at high redshift (Kereš et al. 2005; Dekel & Birnboim

2006; Ocvirk et al. 2008; Dekel et al. 2009; van de Voort et al. 2011; Faucher-Giguère

et al. 2011; Nelson et al. 2013). The hot mode of accretion refers to the accreted gas

that shock-heats to the halo virial temperature. The cold mode refers to gas that flows

along dark matter filaments and is accreted onto the central galaxy without being shock
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heated near the virial radius. It has been found that the cold streams end up being the

dominant mode of accretion in halos at high redshift (Dekel et al. 2009). However, it has

also been found that most of cold gas from filaments does experience significant heating

at the moment of accretion onto the galaxy (Nelson et al. 2013).

Numerical deficiencies inherent from different simulations may modify the relative con-

tributions of the hot and cold modes of accretion. In this work we discuss the differences

in the performance of gas mixing in the moving mesh code AREPO (Springel 2010), in

the standard SPH code GADGET (Springel 2005) and in the most recent formulation of

SPH named ‘Anarchy’ (Dalla Vecchia 2016 in prep.), and also compare different criteria

to select hot mode accretion onto halos.

Besides the rates of gas accretion, the hot halo is susceptible to feedback mechanisms,

that can suppress cooling from the hot halo, modify the distribution of hot gas in the

halo (van de Voort & Schaye 2012) and (to a limited degree) reduce the accretion rates

onto halos (van de Voort et al. 2011). In this work we investigate the impact of feedback

mechanisms on the hot halo in detail and analyze whether feedback is able to modify the

mass scale of hot halo formation.

We use the suite of cosmological hydrodynamical simulations from the EAGLE project

to investigate the physical properties of the hot gas in the halo, and its dependence on

energy sources like stellar feedback and AGN feedback. The main goal of this work is to

study the thermal properties of gas accreting onto halos and the gas mass that remains

hot in the halo (Mhot). We will make use of Mhot and the fraction of shock-heated gas

in the derivation of a semi-analytic approach, to calculate the heating rates of gas in the

halo and the mass scale of hot halo formation. In a companion work, Correa et al. (2016,

hereafter Paper II), we compare gas cooling rates implemented in semi-analytic models

with those obtained with the EAGLE simulations. Having determined the mass scale

above which a hot halo forms, we derive a physically motivated model for gas accretion

onto galaxies that depends on the hot/cold modes of accretion onto halos, and on the

rate of gas cooling from the hot halo.

The outline of this chapter is as follows. First, we describe the EAGLE simulations

series used in this study and analysis methodology in §5.2. We present our main results

concerning the physical properties of hot and cold gas in the halo in §5.3 and on the

modes of gas accretion in §5.4. In §5.5 we develop a semi-analytic approach to calculate

a ‘critical mass scale’, Mcrit, for hot halo formation, and compare with our numerical

results and previous works. Finally, in §5.6 we summarize our conclusions.
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Table 5.1: List of simulations. From left-to-right the columns show: simulation identifier; co-
moving box size; number of dark matter particles (there are equally many bary-
onic particles); initial baryonic particle mass; dark matter particle mass; comoving
(Plummer-equivalent) gravitational softening; maximum physical softening.

Simulation L N mb mdm εcom εprop

(cMpc) (M ⊙) (M ⊙) (ckpc) (proper kpc)

L025N0376 25 3763 1.81 × 106 9.70 × 106 2.66 0.70
L025N0752 25 7523 2.26 × 105 1.21 × 106 1.33 0.35
L050N0752 50 7523 1.81 × 106 9.70 × 106 2.66 0.70
L100N1504 100 15043 1.81 × 106 9.70 × 106 2.66 0.70

5.2 Simulations

To investigate the formation and evolution of the hot halos surrounding galaxies, we use

cosmological, hydrodynamical simulations from the Evolution and Assembly of GaLaxies

and their Environments project (EAGLE; Schaye et al. 2015; Crain et al. 2015). The

EAGLE simulations were run using a modified version of GADGET 3 (Springel 2005), a

N -Body Tree-PM smoothed particle hydrodynamics (SPH) code. The EAGLE version

contains a new formulation of SPH, new time stepping and new subgrid physics. Below

we present a summary of the EAGLE models. For a more complete description see Schaye

et al. (2015).

The EAGLE simulations assume a ΛCDM cosmology with the parameters derived from

Planck-1 data (Planck Collaboration et al. 2014), Ωm = 1 − ΩΛ = 0.307, Ωb = 0.04825,

h = 0.6777, σ8 = 0.8288, ns = 0.9611. The primordial mass fractions of hydrogen and

helium are X = 0.752 and Y = 0.248, respectively.

Table 5.1 lists the box sizes and resolutions of the simulations used in this work. We use

the notation LxxxNyyyy, where xxx indicates box size (ranging from 25 to 100 comoving

Mpc) and yyyy indicates the cube root of the number of particles per species (ranging

from 3763 to 15043, with the number of baryonic particles initially equal to the number of

dark mater particles). The gravitational softening was kept fixed in comoving units down

to z = 2.8 and in proper units thereafter. We will refer to simulations with the mass and

spatial resolution of L025N0376 as intermediate-resolution runs, and to simulations with

the resolution of L025N0752 as high-resolution runs.

5.2.1 Baryonic physics

Radiative cooling and photo-heating are included as in Wiersma et al. (2009). The

element-by-element radiative rates are computed in the presence of the cosmic microwave

background (CMB), and the Haardt & Madau (2001) model for UV and X-ray back-

ground radiation from quasars and galaxies.
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Star formation is modelled following the recipe of Schaye & Dalla Vecchia (2008). Star

formation is stochastic above a density threshold, nH,0, that depends on metallicity (in

the model of Schaye 2004, nH,0 is the density of the warm, atomic phase just before it

becomes multiphase with a cold, molecular component), with the probability of forming

stars dependent on pressure, which is limited to values above a polytropic equation of

state P ∝ ρ
4/3
gas . The implementation of stellar evolution and mass loss follows the work

of Wiersma et al. (2009). Star particles are treated as simple stellar populations with a

Chabrier (2003) initial mass function, spanning the range 0.1 − 100 M⊙. Feedback from

star formation and supernovae events follows the stochastic thermal feedback scheme

of Dalla Vecchia & Schaye (2012). Rather than heating all neighbouring gas particles

within the SPH kernel, they are selected stochastically based on the available energy, and

then heated by a fixed temperature difference of ∆T = 107.5K. The probability that a

neighbouring SPH particle is heated is determined by the fraction of the energy budget

that is available for feedback, fth, defined as

fth = fth,min +
fth,max − fth,min

1 +
(

Z
0.1Z⊙

)nZ
(

nH,birth

nH,0

)−nn
, (5.1)

which depends on maximum and minimum threshold values (fth,max and fth,min, respec-

tively), on density (nH,0 refers to hydrogen number density and nH,birth to the density

inherited by the star particle) and metallicity (Z) of the gas particle. If ∆T is sufficiently

high to ensure that radiative losses are initially small, the physical efficiency of feedback

can be controlled by adjusting fth. By convention fth = 1 corresponds to the expected

value of injected energy being ESN = 1.736 × 1049 erg M−1
⊙ of stellar mass formed.

For AGN feedback, black hole seeds (of ≈ 1.4 × 105 M⊙) are included in the most

bound gas particle in halos of mass greater than ≈ 1.4 × 1010 M⊙ (Springel et al. 2005).

Black holes can grow through mergers and accretion. The accretion events follow a

modified Bondi-Hoyle formula that accounts for the angular momentum of the accreting

gas (Rosas-Guevara et al. 2013; Schaye et al. 2015), and a free parameter that is related

to disk viscosity. AGN feedback follows the accretion of mass onto the black hole, where

a fraction (0.015) of the accreted rest mass energy is released as thermal energy into

the surrounding gas, and is implemented stochastically, as per the supernova feedback

scheme, with a fixed free parameter heating temperature, ∆TAGN.

The reference simulations (hereafter REF) use fth,max = 3, fth,min = 0.3, nH,0 = 0.67

cm−3 and ∆TAGN = 108.5 K. The values were chosen to obtain very good agreement

with the present-day galaxy stellar mass function and disk galaxy sizes (Schaye et al.

2015). When the resolution is increased, the parameters may need to be (re-)calibrated

to match the observales. The high-resolution simulation with recalibrated parameters is

called RECAL. In addition to REF and RECAL, we also use simulations with different
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Table 5.2: List of feedback parameters that are varied in the simulations. From left-to-right
the columns show: simulation identifier (prefix), asymptotic maximum and minimum
values of the efficiency of star formation feedback (fth), density term denominator
(nH,0) and exponents (nn and nZ) from eq. (5.1), and temperature increment of
stochastic AGN heating (∆TAGN).

Simulation fth,(max,min) nH,0 nn(= nZ) ∆TAGN

(cm−3) (cm−3) (K)

REF 3.0, 0.30 0.67 2/ ln(10) 108.5

WeakFB 1.5, 0.15 0.67 2/ ln(10) 108.5

StrongFB 6.0, 0.60 0.67 2/ ln(10) 108.5

NoAGN 3.0, 0.30 0.67 2/ ln(10) −
AGNdT9 3.0, 0.30 0.67 2/ ln(10) 109.5

feedback implementations to test the impact of feedback on the formation of the hot

halo. Table 5.2 lists the values of the feedback parameters adopted in each simulation.

Additional information regarding the performance of the EAGLE simulations, including

an analysis of subgrid parameter variations, a study of the evolution of galaxy masses

and of star formation rates can be found in Crain et al. (2015), Furlong et al. (2014) and

Schaye et al. (2015).

5.2.2 Hydrodynamics

There has been a lot of debate regarding the utility of SPH modelling of fluid mixing and

of gas heating and cooling. For instance, three-dimensional hydrodynamical simulations

(Kay et al. 2000; Fardal et al. 2001; Kereš et al. 2005; Kereš et al. 2009; van de Voort

et al. 2011) have suggested that the majority of the gas entering galaxies has never been

shock-heated. On the other hand, it has been shown by Thacker et al. (2000), Agertz

et al. (2007) and Creasey et al. (2011) that SPH simulations may not adequately resolve

shocks of accreted gas. Since shocks are generally spread over several SPH kernel lengths,

the heating rate is smoothed over time, making it easier for radiative cooling to become

important. In addition, if radiative cooling is able to limit the maximum temperature

reached by the gas particle, the radiative loses are enhanced.

Differently from SPH, numerical simulations using grids do not widely smooth out the

shocks, and are then better at identifying shock temperatures spikes. Recently, Nelson

et al. (2013) compared the moving mesh code AREPO (Springel 2010) with the standard

SPH code GADGET, and found that most of the cold gas from filaments experiences

significant heating at the moment of accretion, implying that the numerical deficiencies

inherent in different simulations may modify the relative contributions of hot and cold

modes of accretion. Similarly, Vogelsberger et al. (2012) compared both codes and dis-

cussed the two main reasons for the differences in the cooling rates. First, gas mixing

is largely suppressed in GADGET, especially at density phase boundaries. Second, the
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presence of turbulent energy drives differences in dissipative heating in halos. The same

conclusion was reached by Schaller et al. (2015), who compared GADGET with a more

recent formulation of SPH named ‘Anarchy’ (Dalla Vecchia 2016 in prep., see Appendix

A of Schaye et al. 2015 and Section 2.2.2 of Schaller et al. 2015), and found that unlike

GADGET, Anarchy is able to mix phases in contact discontinuity allowing dense clumps

to dissolve into the hot halo.

The EAGLE simulations include Anarchy, which has proven to solve the problems

identified by Vogelsberger et al. (2012), and greatly improves the performance on standard

hydrodynamical tests, when compared to the original SPH implementation in GADGET

(Dalla Vecchia 2016 in prep. but see Hu et al. 2014 for similar results). Anarchy makes

use of the pressure-entropy formulation derived in Hopkins (2013), allowing it to avoid

spurious jumps at contact discontinuities. It also uses an artificial viscosity switch as in

Cullen & Dehnen (2010), that allows the viscosity limiter to be stronger when shocks

and shear flows are present. In addition, Anarchy includes an artificial conduction switch

(similar to that of Price 2008), the C2 Wendland (1995) kernel and the time step limiters of

Durier & Dalla Vecchia (2012), which ensure that ambient particles do not remain inactive

when a shock is approaching. These substantial improvements of the SPH formulation in

the EAGLE simulations motivate a detailed description of the resulting predictions for

hot halo formation and of hot/cold mode accretion.

Besides numerical performances, some differences in the contribution of hot and cold

modes of accretion onto galaxies and halos are due to the method employed to select

shock-heated gas. Previous works (e.g. Kereš et al. 2005, 2009; Faucher-Giguère et al.

2011; van de Voort et al. 2011; Nelson et al. 2013, among others) followed the gas thermal

history and applied a fixed temperature cut on the distribution of the gas maximum

temperature (Tmax), to separate shock-heated from cold gas. However, we believe that

at high redshift Tmax may not be suitable for identifying cold flows, if it occurs that

gas goes through a shock but immediately cools afterwards (due to in-shock cooling, e.g.

Hutchings & Thomas 2000). In this case, if a filament is mostly cold except at a point

in space and for a short period of time, numerical studies would label it as hot mode

accretion but observations would call it a cold flow. Using the EAGLE simulations and

the Tmax criteria to select hot mode accretion (with Tmax,cut = 105.5 K), we analyse

in-shock cooling. We find that 80% (90%) of the gas particles labeled as shock-heated

accretion onto 1012 M⊙ (1013 M⊙) halos in the redshift interval 2.01-2.24, remain hot

after crossing the virial radius (have temperatures larger than 105 K at z = 2). But the

remaining 20% (10%) that goes through a shock and is heated, rapidly cools afterwards

(have temperatures lower than 105 K at z = 2). Then, to avoid counting gas particles

as hot when they are actually undergoing in-shock cooling, we analyse an alternative

method to identify shock-heated particles in §5.4, based on post-shock temperature and
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entropy values.

5.2.3 Identifying halos and galaxies

Throughout this work we select the largest subhalo in each Friends-of-Friends (FoF) group

(Davis et al. 1985), and use the SUBFIND algorithm (Springel et al. 2001; Dolag et al.

2009) to identify the substructures (subhalos) within it. The FoF algorithm adopts a

dimensionless linking length of 0.2, and the SUBFIND algorithm calculates halo virial

masses and radii via a spherical overdensity routine that centers the main subhalo from

the FoF group on the minimum of the gravitational potential. We define halo masses,

M200, as all matter within the radius r200 for which the mean internal density is 200

times the critical density.

Once we have identified the largest halos, we build merger trees across the simulation

snapshots as follows. First, at each output redshift (snapshot) we select ‘resolved’ ha-

los which contain more than 1000 dark matter particles, corresponding to a minimum

halo mass of M200 = 109.818 M⊙ (108.835 M⊙) in the intermediate- (high-) resolution sim-

ulations. This limit on the number of dark mater particles results from a convergence

analysis that we present in Chapter 6, where we find that in smaller halos the accretion

onto galaxies does not converge, indicating that the inner galaxies are not well resolved.

We refer to the resolved halos as ‘descendants’, and then link each descendant with a

unique ‘progenitor’ at the previous output redshift. This is nontrivial due to halo frag-

mentation, in which subhalos of a progenitor halo may have descendants that reside in

more than one halo. Such fragmentation can be either spurious or due to a physical un-

binding event. To correct this, we link the descendant to the progenitor that contains the

majority of the descendant’s 25 most bound dark matter particles (see 3 for an analysis

of halo mass history convergence using the mentioned criteria to connect halos between

snapshots).

To select the central galaxies embedded in each resolved halo, we identify the gravita-

tionally bound cold and dense gas within r200 that is star-forming and/or has a hydrogen

number density, nH > 0.01cm−3, and temperature T < 105K (atomic ISM). We also

require that all particles should be contained within a sphere of radius 0.15 × r200, in

order not to confuse infalling cold flows (that would be included by the T − nH cuts but

are at large radii) as part of the galaxy.

5.2.4 Measuring gas accretion

In this chapter (as well as in Chapter 6), we distinguish between gas accreted onto a halo

from gas accreted onto a galaxy. To select gas particles accreted onto halos we first build

merger trees across the simulation snapshots. For each descendant halo at zi and its
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linked progenitor at zj (zj > zi), we identify the particles that are in the descendant but

not in its progenitor by performing particle ID matching. We then select particles that

are new in the system and are within the virial radius, as particles accreted in the redshift

range zi ≤ z < zj . To calculate gas accretion onto galaxies we follow the methodology

described above for calculating accreted particles onto halos, but now we select the new

particles within the radius 0.15×r200 as particles accreted onto the galaxies in the redshift

range zi ≤ z < zj (see Chapter 6 for a discussion on methods for calculating gas accretion

onto galaxies).

5.3 Hot halo formation

The standard model of galaxy formation (e.g. Rees & Ostriker 1977 and White & Rees

1978) assumes that as long as the cooling time, tcool, is shorter than the dynamical time,

tdyn, the infalling gas cools (typically inside a ‘cooling radius’, White & Frenk 1991) and

settles into the galaxy. Otherwise, the gas is unable to radiate away its thermal energy

and forms a hot hydrostatic atmosphere, which is pressure supported against gravitational

collapse. In this section we investigate when the hot halo forms in the EAGLE simulations,

by analyzing the interplay between the cooling and dynamical times of the gas particles

in the inner halo. Throughout this work we define hot gas as all gas particles that have

tcool > tdyn, and that do not form part of the galaxy, i.e. r > 0.15r200.

We calculate tdyn as a function of the radial position of the gas particle as

tdyn = r/Vc(r), (5.2)

where Vc(r) = [GM(< r)/r]1/2 is the circular velocity and M(< r) is the mass in the

halo enclosed within r. We calculate tcool as

tcool =
3nkBT

2Λ
, (5.3)

where n is the number density of the gas particle (n = ρgas/µmp, µ = 0.59 for a fully

ionized gas and mp is the proton mass), kB is the Boltzmann constant, T is the gas

temperature and Λ is the cooling rate per unit volume with units of erg cm−3s−1. To

calculate Λ, we use the tabulated cooling function for gas exposed to the evolving UV/X-

ray background from Haardt & Madau (2001) given by Wiersma et al. (2009), which was

also used in the EAGLE simulations.

Fig. 5.1 shows temperature profiles (left panels), logarithmic ratio between cooling

times and dynamical times (middle panels) and the respective mass-weighted probability

density function (PDF) of log10 tcool/tdyn (right panels) of gas particles from halos in

the mass range 1011.9 − 1012.1 M⊙ (top panels), 1011.4 − 1011.6 M⊙ (middle panels) and
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Figure 5.1: Temperature profile (left panels), logarithmic ratio between cooling times and dy-
namical times (middle panels) and the respective mass-weighted probability density
function (PDF, right panels) of log10 tcool/tdyn of gas particles from halos in the
mass range 1011.9 − 1012.1 M⊙ (top panels), 1011.4 − 1011.6 M⊙ (middle panels) and
1010.9 −1011.1 M⊙ (bottom panels) at z = 0 taken from the L025N0752/REF simula-
tion. The number of particles in a pixel is used for colour coding. The solid, dotted
and dashed lines in the left panels correspond to the median temperature per radial
bin for different simulations.
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Figure 5.2: Same as Fig. 5.1 but for halos at z = 2.24.

1010.9 − 1011.1 M⊙ (bottom panels) at z = 0, taken from the L025N0752/REF simulation.

In the right panels and throughout this work, the PDFs are calculated by stacking halos

in the selected mass range and distributing the gas particles in logarithmic bins of size

0.1. We then sum the mass of the gas particles in each bin and normalize the distribution

by the total gas mass. In the left panels, we include the median values of the mass, virial

temperature and virial radius of halos selected in each mass bin. The left panels also show

in solid, dotted and dashed lines the median temperature per radial bin of gas from halos

taken from the simulations L025N0376/REF, L025N0752/REF and L025N0752/RECAL,

respectively.

The left panels of Fig. 5.1 show that while there is very good agreement in the median

temperature profiles at low (r/r200 < 0.2) and high (r/r200 > 0.4) radii, at intermediate

radii the median temperatures from the intermediate-resolution run (L025N0376/REF)

are slightly larger (up to 0.3 dex) with respect to the high-resolution runs (L025N0752).

However, overall we find the median temperature profiles mostly converge when decreas-

ing the resolution. This is in agreement with the convergence analysis done by Nelson

et al. (2015), who concluded that the physics (different models of stellar winds or AGN

feedback) further modifies T (r) rather than resolution (van de Voort & Schaye 2012; Nel-

son et al. 2015; Suresh et al. 2015). We also find, that in the radial range 0.2−0.4×r/r200,

the median temperatures drop to Tgas ∼ 104 K (in agreement with Nelson et al. 2015,

rdrop = 0.25r200 and van de Voort & Schaye (2012), rdrop = 0.2r200), because of the high

densities, that rapidly decrease the gas cooling times, making it able to radiate away its

thermal energy and join the ISM.

The top and middle left panels of Fig. 5.1 show a deficit of T ∼ 105.5 K gas particles
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Figure 5.3: Probability density function of the logarithmic ratio between cooling times and
dynamical times of gas from halos in the mass range 1011.4 − 1011.6 M⊙, 1011.9 −
1012.1 M⊙, 1012.4 − 1012.6 M⊙, 1012.9 − 1013.1 M⊙, and 1013.4 − 1013.6 M⊙ at z = 0
(left panel) and z = 2.24 (right panel).

Figure 5.4: Probability density function of the logarithmic ratio between cooling times and
dynamical times of gas from halos in the mass range 1011.5 − 1011.6 M⊙, 1011.6 −
1011.7 M⊙, 1011.7 −1011.8 M⊙, 1011.8 −1011.9 M⊙ and 1011.9 −1012 M⊙ at z = 0. The
legends show the median mass of the halos in each mass bin. The different panels
show simulations with different feedback prescriptions: no AGN (top left), weak
stellar feedback (top right), strong AGN (bottom left) and strong stellar feedback
(bottom right).
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at small radii, reflecting the drop in their cooling times as they infall into the galaxy. For

a better understanding of the cooling flows as a function of halo mass, we next analyse

the middle and right panels. The bottom middle panel shows that in halos with masses

between 1010.9 − 1011.1 M⊙, most of the gas follows the cooling flow towards the inner

galaxy, despite the small fraction of gas with large tcool. At larger halo masses, the cooling

flow decreases as the hot halo forms. In this case, the gas particles above the black dashed

line are not able to cool and therefore form the hot halo. The middle panel shows that

halos between 1011.4 − 1011.6 M⊙ are in the intermediate stage between developing a hot

stable atmosphere or continuing to fuel the galaxy through cooling flows. The top middle

panel clearly shows remnants of the cooling flow and a stable hot halo. In these panels

there is no evidence of cold flows from filaments.

Fig. 5.2 shows results corresponding to those in Fig. 5.1, but for halos in the mass range

1011.9 −1012.1 M⊙ (top panels), 1011.4 −1011.6 M⊙ (bottom panels) halos at z = 2.24. The

top middle panel shows that 1012 M⊙ halos are able to develop a hot atmosphere, despite

the significant fraction of cold gas at large radii that is accreted onto the inner halo. This

cold gas forms part of the cold flows from filaments, that cross the virial radius, and

are directly accreted onto the inner galaxy. The presence of cold flows produces gaseous

halos with an isothermal temperature profile of Tgas ∼ 104 K at all radii. Rather than

analyzing the cooling time profiles, Nelson et al. (2015) and van de Voort & Schaye (2012)

analysed the entropy profiles of halos at z = 2, and concluded the that while entropy

of the cold-mode gas decreases smoothly and strongly towards the center, the entropy

of the hot-mode gas decreases slightly down to 0.2r200, after which it drops steeply. We

find that the cooling time profiles of the hot (tcool > tdyn) and cold (tcool < tdyn) modes

follow that of entropy.

Figs. 5.1 and 5.2 not only indicate that the stable hot halo forms between the halo

mass range 1011.5 M⊙ and 1012 M⊙ with a weak dependence on redshift, but also that a

halo with a hot atmosphere should present a bimodal tcool/tdyn PDF. This bimodality

will have a local maximum at tcool > tdyn followed by a local minimum at tcool < tdyn

(see top right panel). It is important to note that the amount of hot gas at large radii

depends not only on accretion shocks that occur close to r200, but also on the energy

produced by stars (energy expelled through stellar winds, radiation and supernovae) and

AGN. We investigate this further in the following subsection.

5.3.1 Impact of feedback

Feedback can affect the formation of the hot halo around galaxies. For example, strong

SN activity generates large outflows and strong winds, that shock against the gaseous

halo. As a result, the winds fill the halo with gas expelled from the galaxy, increas-

ing the amount of hot gas at large radii. In this subsection we compare the tcool/tdyn
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mass-weighted PDF at fixed halo mass obtained from simulations with different feedback

implementations (see Table 5.2 for reference and §5.2.1 for a brief description), and de-

termine by visual inspection the mass range where the hot halo is forming by following

the analysis from the previous section.

Fig. 5.3 shows the mass-weighted PDF of tcool/tdyn of gas from halos in the mass

range 1011.4 − 1011.6 M⊙, 1011.9 − 1012.1 M⊙, 1012.4 − 1012.6 M⊙, 1012.9 − 1013.1 M⊙, and

1013.4 − 1013.6 M⊙ at z = 0 (left panel) and z = 2.24 (right panel). In the figures, the

labels show the median mass of halos in each mass bin. In this case the tcool/tdyn PDFs

were calculated from the L100N1504/REF simulation. The region where tcool > tdyn

corresponds to hot gas close to r200.

As the halo mass increases so does the amount of hot gas, and the tcool/tdyn PDF of

gas in 1012 M⊙ halos at z = 0 shows a bimodal shape, that turns to be mostly unimodal

in larger halos (> 1013 M⊙). At z = 2.24, the tcool/tdyn PDF bimodality is still present

in 1012 M⊙ halos, and remains in larger halos due to the contribution of cold flows that

also increase the peak at tcool < tdyn. We find that the presence of the bimodality in

the tcool/tdyn PDF indicates the increasing amount of hot gas at large radii and the

eventual formation of the hot halo. Then, from visual inspection, we determine that the

hot atmosphere is forming in halos with masses between 1011.5 and 1012 M⊙ at z = 0 and

z = 2.24.

The panels in Fig. 5.4 repeat the analysis shown in the left panel of Fig. 5.3, but in-

stead show tcool/tdyn mass-weighted PDFs from the L025N0376 simulations with different

feedback prescriptions. In this case, the PDFs correspond to gas from halos in the mass

range 1011.5 − 1011.6 M⊙, 1011.6 − 1011.7 M⊙, 1011.7 − 1011.8 M⊙, 1011.8 − 1011.9 M⊙ and

1011.9 − 1012 M⊙.

In the top left panel of Fig. 5.4, the simulation does not have AGN feedback but

includes the same feedback from star formation as in REF. It can be seen that neither

the bimodality of the tcool/tdyn PDF nor the amount of hot gas are strongly affected. The

same conclusion is found for the strong AGN feedback case (bottom left panel), meaning

that in halos with masses between 1011.5 − 1011.9 M⊙, AGN feedback does not play a

major roll in determining the amount of hot gas in the inner halo, nor in regulating

the formation of the hot halo. In larger halos (≥ 1012 M⊙), AGN feedback is able to

reduce the mass fraction of cold-dense gas (Suresh et al. 2015) and decrease the hot

gas fraction (van de Voort et al. 2011; van de Voort & Schaye 2012). This last can be

seen by comparing the blue dot-dashed curves (1012 M⊙ halos) from the top and bottom

panels, where the amount of gas with tcool > tdyn decreases in halos with stronger AGN

feedback.

The right panels show the tcool/tdyn PDFs in the weak (top panel) and strong stellar

feedback (bottom) scenarios (but including the same AGN feedback as in the REF model).
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For these halo masses, stellar feedback has a stronger impact on the tcool/tdyn PDFs

than AGN feedback. By comparing the weak (top right panel), fiducial (top left panel)

and strong (bottom right panel) stellar feedback scenarios, we find that stellar feedback

increases the fraction of hot gas in low-mass halos (< 1012 M⊙), and thus limits the build-

up of cold-mode gas in the halo centre (i.e. by shock heating, in agreement with van de

Voort & Schaye 2012).

We investigate this behavior further in §5.5 by deriving an analytic model to determine

the formation of a stable hot hydrostatic atmosphere. The model depends on the amount

of hot gas within the halo, which we calculate in the next subsection, and also on the

fraction of accreted gas that shock-heats to the halo virial temperature (§5.4).

5.3.2 Hot halo mass

In this section we look for a correlation between Mhot, i.e. the mass of gas with tcool > tdyn

and r > 0.15r200, and the total halo mass as a function of redshift. Fig. 5.5 shows the

median ratio of Mhot/(Ωb,0/Ωm,0)M200 (with Ωb,0/Ωm,0 = 0.146 the universal baryon

fraction) at z = 0 taken from a range of simulations (as indicated in the legends) at z = 0

(top panel) and at z = 2.24 (middle panel). In these panels the error bars show the 1σ

scatter of the relation. The median ratio of Mhot/(Ωb,0/Ωm,0)M200 is also shown in the

bottom panel, but in this case the values are taken from the L100N1504/REF simulation

and at various output redshifts.

The top panel of Fig. 5.5 does not show good agreement between the intermediate-

resolution and the high-resolution simulations. A better agreement is achieved at z = 2.24

(middle panel). Although only weak convergence is achieved at z = 0, we find that the

box-size test between the intermediate-resolution simulations is in excellent agreement at

all redshifts. The intermediate-resolution runs show that the hot gas represents < 10%

of the total halo gas mass for M200 < 1011.7 M⊙ at z = 0. The hot gas mass fraction

reaches 80 − 90% in 1013.5 M⊙ halos and remains roughly constant for higher masses. In

smaller halos (M200 < 1010.5 M⊙), the hot gas mass fraction remains roughly constant

(Mhot/(Ωm,0/Ωb,0)M200 ∼ 0.02−0.03). In these halos cold accretion dominates, therefore

the only heating mechanism that maintains Mhot is the UV background (since Fig. 5.6

shows that Mhot in low-mass halos is feedback invariant).

The bottom panel of Fig. 5.5 shows the redshift evolution of the hot gas in halos.

We find that in halos larger than 1011.5 M⊙, Mhot/(Ωb,0/Ωm,0)M200 remains constant in

the redshift range 3 to 6 and at low redshift it increases with time. In smaller halos

(M200 < 1011.5 M⊙), Mhot/(Ωb,0/Ωm,0)M200 increases with time until z = 1. At z < 1

it decreases due to to drop in the accretion rates onto small halos produced by the

accelerated expansion of the Universe (Chapter 2). Due to the decrease in the amount of

gas accreted hot, the hot gas already in the halo is not re-heated, it then cools and Mhot
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Figure 5.5: Fraction of hot gas mass with respect to the total halo mass, M200 (normalized by
the universal baryon fraction), as a function of M200 from different simulations at
z = 0 (top panel), at z = 2.24 (middle panel), and for REF-L100N1504 at various
redshifts (from z = 0 to z = 6, bottom panel). The error bars in the top and middle
panels show the 1σ scatter of the relation. Each bin contains at least 5 halos.
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decreases. In the case of high-mass halos we do not find that Mhot decreases at z < 1,

despite the fact that the halo accretion rates also decrease. This is because the stronger

feedback mechanisms in large halos (like AGN feedback) expel material out of the galaxy,

that shocks and re-heats the hot gas already in the halo.

We next perform a least-square minimization to look for the best-fit relation Mhot −
(Ωb,0/Ωm,0)M200 as a function of redshift. We apply equal weighting for each mass bin

from the L100N1504/REF simulation (which we use to cover a large halo mass range)

and minimize the quantity ∆j = 1
N

∑N
i=1 Y 2

i , where

Yi = log10





Mhot

(
Ωb,0

Ωm,0
)M200





i

− F [M200,i, α(zj), β(zj), γ(zj)], (5.4)

N is the number of bins at each output redhisft zj , and F is

F = α(zj) + β(zj)xi + γ(zj)x2
i , (5.5)

xi = log10(M200,i/1012 M⊙). (5.6)

We obtain the best-fitting values for α, β and γ at each redshift zj , and following the

same methodology we look for the best-fit expression of these parameters as functions of

redshift.

We find that the following expression best reproduces the relation in the halo mass

range M200 = 1011 − 1014 M⊙,

log10

(

Mhot

fbM200

)

= α(z) + β(z)x + γ(z)x2, (5.7)

x = log10(M200/1012 M⊙), (5.8)

where fb = Ωb,0/Ωm,0 is the universal baryon fraction and α, β and γ are functions of z

given by

if z ≤ 2



















α(z) = −0.792 + 0.315z̃ − 0.958z̃2,

β(z) = 0.519 − 0.574z̃ + 0.852z̃2,

γ(z) = −0.055 + 0.003z̃,

(5.9)

if z > 2



















α(z) = −0.384 − 1.556z̃ + 1.167z̃2,

β(z) = 0.117 + 0.938z̃ − 0.552z̃2,

γ(z) = −0.049,

(5.10)

where z̃ = log10(1 + z).
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Next, we investigate how the presence of different feedback mechanisms affect the

amount of hot gas in the halo. Fig. 5.6 shows the Mhot − (Ωb,0/Ωm,0)M200 relation for

halos in the mass range 1010 − 1013 M⊙ at z = 0 from the L025N0376 simulations. The

different coloured lines correspond to simulations with different feedback prescriptions.

As concluded from the previous section, stellar feedback has a larger impact on the

amount of hot gas than AGN feedback. Strong stellar feedback increases the hot gas

mass fraction by a factor of 1.67 in 1012 M⊙ halos relative to the REF model, whereas

weak stellar feedback decreases the hot gas mass fraction by a factor of 2.29. Similarly,

no (strong) AGN activity results in an increase (decrease) by a factor of 1.41 in the

hot mass fraction. While strong stellar feedback increases the hot gas mass in the halo,

stronger AGN feedback decreases it. We find that although stellar and AGN feedback use

a similar thermal implementation (Dalla Vecchia & Schaye 2012), a strong AGN mainly

ejects gas mass out of the halo, or prevents it from falling into the halo, whereas strong

stellar feedback ejects gas mass out of the galaxy into the inner halo.

In this section, gas particles with long cooling times (tcool > tdyn) are considered to be

hot and counted in the calculation of Mhot. Different from this work, van de Voort &

Schaye (2012) separated hot gas from cold by performing a Tmax cut, and found that the

hot fraction as a function of radius decreases not only when AGN feedback is switched

on, but also when stellar winds are enhanced. The reason for this is the way stellar

feedback is implemented. In the OWLS simulations (Schaye et al. 2010) used by van

de Voort & Schaye (2012), the winds velocity scales with the local sound speed, so it

largely overcomes the pressure of the ISM, blowing the gas out of the galaxy and halo

(Dalla Vecchia & Schaye 2008), thus decreasing the amount of hot gas. In this work, the

efficiency of stellar feedback is regulated by the fraction of the energy budget available

(fth), and not to a temperature increase, that would drive larger outflow velocities (Dalla

Vecchia & Schaye 2012).

So far we have analysed the behavior of the hot gas mass in the halo. In the next

section we investigate the fraction of gas that is accreted via hot and cold modes as a

function of halo mass and redshift.

5.4 Hot and cold modes of accretion

Over the last decade, numerical simulations have shown that gas accretion onto halos

occurs in two different modes, either gas shock-heats to the halo virial temperature

when crossing the virial radius (the hot accretion mode), or crosses the virial radius

unperturbed (the cold accretion mode). Several works have found that cold accretion

mostly dominates in low-mass halos (M200 < 1011 M⊙) at z < 2 (e.g. Katz et al. 2003;

Kereš et al. 2005, 2009; Ocvirk et al. 2008; van de Voort et al. 2011; van de Voort & Schaye

2012) and in all halos at z > 2. Both modes appear to coexist at high redshift in massive
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Figure 5.6: Fraction of hot gas mass with respect to the total halo mass, M200 (normalized by
the universal baryon fraction), as a function of M200 at z = 0. The different lines
correspond to the L025N0376 simulations with different feedback prescriptions (see
Table 5.2 and/or §5.2).

halos, which develop a hot hydrostatic atmosphere despite experiencing significant cold

accretion from filaments. The cold accreted gas, that forms part of filaments, is generally

referred to as a ‘cold flow’ (Kereš et al. 2005; Dekel et al. 2009). Cold flows are essential

to galaxy formation, because despite experiencing significant heating when crossing the

hot atmosphere (Nelson et al. 2013), they are responsible for delivering cold, star-forming,

gas deep within the halo (e.g. Dekel et al. 2009).

The contributions from the different modes of accretion can be calculated from the

temperature history of the accreted gas. In the simulations, the evolution of each gas

particle is traced and the maximum temperature, Tmax, ever reached by the particle

(at redshift zmax) is stored in a separate variable. Tmax is updated whenever the gas

particle reaches a higher temperature. However, if the gas particle is star-forming, Tmax

is not updated, and so any possible shock it experiences is ignored. As in van de Voort

et al. (2011), ignoring such shocks is not an inconvenient in our calculations, because we

are interested in the Tmax the particle reached before entering the galaxy and becoming

star-forming.

Kereš et al. (2005) found a clear bimodality in the distribution of Tmax of accreted

particles. They proposed a threshold value, Tmax = 2.5×105 K, given by the minimum in

the distribution of Tmax values, to determine whether gas is accreted hot (Tmax ≥ 2.5×105

K) or cold (Tmax < 2.5 × 105 K). This is an often used method but other approaches

have also been taken. For example, Brooks et al. (2009) identified hot gas accretion

based on an entropy jump criterion, and concluded that their method led to a distinction

of hot/cold mode in very good agreement with the selection of hot/cold gas based on

the use of a constant temperature threshold. In the following section we utilize different
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methods to distinguish between the hot/cold modes of accretion, based on entropy jumps

and maximum temperatures.

5.4.1 Shock definition

Following the method described in §5.2.4, we first look for gas particles that crossed the

virial radius between two consecutive snapshots. Next, we aim to identify all gas particles

that experienced a shock when crossing the virial radius, but do not cool immediately

after (due to in-shock cooling or heating rate smoothing). To this end, we first analyse the

mass-weighted PDF of Tmax, Tgas and Sgas of accreted gas particles. Then, we compare the

maximum temperature criterion with a more physically motivated method based on the

post-shock gas temperature and entropy (Tpost−shock and Spost−shock, respectively), and

conclude that Tpost−shock +Spost−shock is a better method for selecting hot gas accretion.

The top panels of Fig. 5.7 show the mass-weighted PDF of Tmax in the redshift interval

0.0 < z ≤ 0.1 (top left panel) and 2.0 < z ≤ 2.2 (top right panel). The curves are

colored according to the color bars at the top of the figure, which indicate the halo mass

(and its virial temperature) that particles are accreted onto. It can be seen that the

Tmax PDF varies according to M200, being unimodal in low-mass halos and bimodal in

high-mass halos. The minimum of the bimodality also changes with M200, going from

Tmax,min = 105.5 K in 1012 M⊙ halos to Tmax,min = 106 K in 1014 M⊙ halos. Besides this

local minimum, there is a local maximum at 107.5 K for all halo masses. This peak is

produced by stellar feedback instead of accretion shocks. We find that gas particles that

were ejected out of the halo due to stellar feedback, are eventually re-accreted. However,

since they did not reach a temperature larger than 107.5 K when crossing r200, Tmax is not

updated, and they are then always considered as hot mode accretion by the maximum

temperature criterion. When applying this criterion, rather than calculating a Tmax,min

threshold value that changes with M200, we follow previous works from the literature (e.g.

van de Voort et al. 2011; Nelson et al. 2013) and use Tmax = 105.5 K to separate hot from

cold accretion.

We next separate hot from cold accretion using the post-shock gas thermal properties.

In this case, it is well known that a shock front compresses the gas and raises its temper-

ature abruptly, generating large entropy values. The compression and heating push the

gas out of thermal equilibrium. To reach a new equilibrium configuration the gas cools

in a ‘radiative relaxation layer’, which is generally larger than the shock front due to the

collisions required to cool the gas. Within this layer, the post-shock temperature drops

(generally to a fraction of the halo virial temperature, Tpost−shock ≈ (γ − 1)Tvir, with

γ = 5/3 for an ideal gas, see e.g. Tozzi & Norman 2001), the gas is further compressed

and moves subsonically. However, if the shock-heated gas has a long cooling time, after

crossing the radiative layer its temperature will be somewhat higher, therefore rather



5.4. Hot and cold modes of accretion 131

Figure 5.7: Probability density function of maximum temperature (top panels), temperature
(middle panels) and entropy (bottom panels) of gas accreted on to halos in the
redshift ranges z = 0 − 0.1 (left panels) and z = 2.0 − 2.2 (right panels). The curves
are colored according to the colorbar at the top of the figure, which indicates the
halo mass and virial temperature.



132 On the hot halo formation

Figure 5.8: Fraction of gas accreted hot during the redshift ranges 0 ≤ z < 0.1 (green lines),
2.0 ≤ z < 2.2 (red lines) and 4.0 ≤ z < 4.49 (thick blue lines), against halo mass.
The solid curves correspond to the hot fraction calculated using the Tmax method,
whereas the dashed curves correspond to Tpost−shock+Spost−shock method. The error
bars show the 1σ scatter of the fractions.

than infalling onto the galaxy, the gas remains hot forming part of the hot hydrostatic

halo.

To identify the gas particles that do not cool immediately after the shock, we anal-

yse the post-shock gas temperature and entropy. We select the gas particles that were

accreted during the redshift interval zi − zj (zi < zj), and shocked when crossing r200

using a temperature and entropy threshold value. We calculate the gas temperature

and entropy mass-weighted PDFs at redshift zi. As per Tmax, the middle and bottom

panels of Fig. 5.7 show that the Tgas and Sgas PDFs have a bimodal shape. We use the

local minimum of the bimodalities as the threshold values (Tpost−shock = 105.5 K and

Spost−shock = 107.2 K cm2), and label a gas particle as ‘shocked’ when both its entropy

and temperature after accretion are larger than the entropy and temperature thresholds.

We find that large entropy values alone do not correctly indicate whether a particle expe-

rienced an accretion shock, because sometimes occurs that Sgas ∝ Tgas/ρ
2/3
gas ≥ Spost−shock,

due to the fact that ρgas is small. Therefore, in addition to the entropy condition, we

also use the temperature Tpost−shock condition. We also note that the temperature of the

particles alone is not enough to define shocked gas, due to additional heating from the

UV background, that mostly impacts on gas accreting onto low-mass halos.

Fig. 5.8 shows a comparison between the fraction of hot mode gas accretion, fhot,

calculated using Tmax (solid lines) and Tpost−shock + Spost−shock (dashed lines) at z = 0

(green lines), z = 2 (red lines) and z = 4 (thick blue lines). It can be seen that the

fraction of shock-heated gas particles given by Tpost−shock + Spost−shock is a factor 1.25

lower than fhot given by Tmax in 1012 M⊙ halos at z = 0, a factor of 1.6 at z = 2 and a

factor of 2 at z = 4. Although changing the threshold values Tpost−shock and Spost−shock

(as well as changing Tmax) can bring the fhot curves into better agreement, the current

disagreement is expected because of numerical deficiencies, such as in-shock cooling or
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Figure 5.9: Fraction of hot mode gas accretion during 0 ≤ z < 0.1 (top left panel), 1.0 ≤ z < 1.26
(top right panel), 2.0 ≤ z < 2.24 (bottom left panel) against halo mass. In these
panels, the different lines correspond to different simulations and the error bars show
the 1σ scatter of the hot fractions. The bottom right panel shows fraction of hot
mode gas accretion in various redshift ranges.

heating rate smoothing, that enhance the radiative looses of gas undergoing shocks (see

§5.2.2 for a discussion). We believe that Tpost−shock + Spost−shock is a better method

to select hot gas accretion, because it does not include gas particles that go through

a shock but immediately cool afterwards (or are not even shock-heated but counted as

hot accretion, as occurs when Tmax is affected by stellar feedback), and therefore do not

contribute to the hot halo formation process.

5.4.1.1 Gadget vs. Anarchy

In this section we extend the discussion presented in §5.2.2, and analyse the differences in

the hot/cold modes of accretion onto halos when the formulation of the hydrodynamics

scheme is varied. We compare two L025N0376 simulations that use the same subgrid

models but no feedback, one employs the standard SPH code GADGET, while the other

the Anarchy formulation of SPH used in the fiducial EAGLE runs. Fig. 5.10 shows

the same as Fig. 5.8 for z = 0 (top panel) and z = 2 (bottom panel), but the lines

correspond to the GADGET (blue lines) and Anarchy (orange lines) simulations output.
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Figure 5.10: Fraction of gas accreted hot during the redshift ranges 0 ≤ z < 0.1 (top) and
2.0 ≤ z < 2.2 (bottom) against halo mass. The panels show the same as Fig. 5.8,
but in this case the curves correspond to the hot fraction calculated from the
L025N0376/NoFeedback Anarchy (orange lines) and GADGET (blue lines) simula-
tions. The error bars show the 1σ scatter of the fractions. The symbols correspond
to the hot fraction estimates of van de Voort et al (2011, blue triangles) and Nelson
et al. (2013, open circles).

In addition, the panels show the hot fractions estimates from van de Voort et al. (2011)

in filled triangles and from Nelson et al. (2015) in open circles. The top panel shows

excellent agreement between the fhot values in halos smaller than 1012 M⊙, and interesting

differences in larger halos. The Anarchy simulation exhibits a larger fraction of hot

accretion onto large halos (in both, Tmax and Tpost−shock + Spost−shock, methods), than

its GADGET counterpart. This is expected, since the spurious surface tension appearing

in the GADGET formulation of SPH prevents the cold dense clumps of gas from being

disrupted, mixed and heated when crossing R200. We then find that in z = 0 1012 −
1012.5 M⊙ halos, the difference in fhot between GADGET and Anarchy can be as large

as 0.2 dex. At z = 2 the fhot values are not only in very good agreement between

the different simulations (along the halo mass range analysed, differences can appear in

larger halos), but also between the different methods (Tmax vs. Tpost−shock + Spost−shock)

employed.

In addition, the top panel of Fig. 5.10 shows that the Tmax hot fractions taken from

the GADGET simulation are in very good agreement with the hot fractions from van de

Voort et al. (2011). The fact that van de Voort et al. (2011) obtained lower fhot values

in halos > 1012 M⊙ is expected, since they used the OWLS simulation series (Schaye

et al. 2010) with stellar feedback. When comparing with the top panel with Fig. 5.8,

we find that when feedback is switched on, fhot decreases (on average) by 0.1 dex at
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fixed halo mass. The bottom panel also shows very good agreement with van de Voort

et al. (2011), but large differences with Nelson et al. (2013). While van de Voort et al.

(2011) used the GADGET formulation of SPH in their simulations, Nelson et al. (2013)

analysed a simulation series that employ the moving mesh code AREPO (Springel 2010).

Nelson et al. (2013) traced the evolution of the gas properties using a Monte Carlo tracer

particle technique that allow them to compute Tmax. In their work, they did not find

large differences between GADGET and AREPO in the cold mode of accretion onto halos,

and concluded that the cold fraction onto halos mainly depends on the manner (either

with Tmax or other cut-off temperature) in which it is measured.

5.4.2 Hot/Cold fraction

The final ingredient for our model of hot halo formation (§5.5) is the fraction of hot and

cold mode of gas accretion onto halos. The fraction of hot mode gas accretion, fhot(M, z),

can be considered as an indirect measure of the presence of hot gas in the halo, since large

values of fhot imply large values of Mhot/M200. Fig. 5.9 shows fhot(M, z) at z = 0 − 0.1

(top left panel), z = 1.0 − 1.26 (top right panel) and z = 2.0 − 2.24 (bottom left panel).

At each redshift range we find excellent agreement between the fhot(M, z) curves taken

from simulations with different resolution and box size. We find that fhot(M, z) increases

smoothly with halo mass and decreasing redshift.

We look for the best-fit expression of fhot(Mhalo, z) by performing a least-square

minimization. We follow the method described in §5.3.2, we apply equal weighting

for each mass bin from the L100N1504/REF simulation and minimize the quantity

∆j = 1
N

∑N
i [fhot(Mi, zj) − F (M200,i, a(zj), M1/2(zj))]2, where N is the number of mass

bins at each output redshift zj , and F is

F = [exp(a(zj)[x − log10 M1/2(zj)]) + 1]−1, (5.11)

x = log10(M200,i/1012 M⊙). (5.12)

We calculate the best-fitting values of a and M1/2 at each redshift 0 ≤ zj < 6 and in the

halo mass range 1010 ≤ M200 < 1014 M⊙. We then look for the best-fitting expressions

of a and M1/2 as a function of redshift. We find that the relations

fhot(x, z) = [exp(a(z)[x − log10 M1/2(z)]) + 1]−1, (5.13)

x = log10(M200/1012 M⊙), (5.14)
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a(z) =



















−4.301 × 10−1.269z̃+1.288z̃2
if 0 ≤ z < 2,

−1.080 × 100.810z̃−0.423z̃2
if 2 ≤ z < 4,

−2.471 if z ≥ 4,

(5.15)

z̃ = log10(1 + z), (5.16)

M1/2(z) =



















−0.149 + 0.217z + 0.067z2 if 0 ≤ z < 2,

−0.248 + 0.534z − 0.069z2 if 2 ≤ z < 4,

0.724 + 0.015z if z ≥ 4,

(5.17)

best reproduce the fraction of hot mode accretion as a function of halo mass and redshift.

To cover a large range in halo mass we calculated the best-fitting relations using the

fractions of hot accretion from the L100N1504/REF simulation. The bottom right panel

of Fig. 5.9 shows the fraction of hot accretion in various redshift ranges (0 ≤ z < 6) taken

the L100N1504/REF simulation. We find that the redshift evolution of fhot is similar

to that of Mhot/(Ωb,0/Ωm,0)M200 (shown in the bottom panel Fig. 5.5). For a given

halo mass, fhot increases with time until z = 1. At z < 1 fhot increases in high-mass

halos (M200 > 1011.5 M⊙) but decreases in low-mass halos (M200 < 1011.5 M⊙). This is in

agreement with van de Voort et al. (2011), who calculated fhot using the Tmax criterion.

We also investigate how fhot(M, z) is affected when we vary the feedback mechanisms.

We find that despite the total gas accretion onto the halo remaining unchanged under

varying feedback mechanisms (in agreement with van de Voort et al. 2011), fhot(M, z)

increases at fixed halo mass for strong stellar feedback and no AGN feedback scenarios.

There is a larger impact from stellar feedback, i.e. strong stellar feedback increases

fhot(M, z) by a factor of 1.2 in 1012 M⊙ halos, whereas weak stellar feedback decreases

it by a factor of 1.26. Strong AGN feedback decreases fhot(M, z) but only in high-mass

halos and by up to a factor of 1.1. As in van de Voort et al. (2011), we find that the

impact of feedback mechanisms on the fraction of hot mode gas accretion is small, and

can be treated as negligible.

In the next section we derive a semi-analytic model for hot halo formation by making

use of the fraction of hot mode gas accretion calculated in this section, and on the amount

of hot gas mass in the halo calculated in §5.3.2.

5.5 Toy model

It is known that shock-heated gas can develop sufficient pressure to balance the gravi-

tational attraction towards the halo centre (e.g. Birnboim & Dekel 2003), remain hot

and form part of the halo hot hydrostatic atmosphere. In this section we present a semi-
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analytic model that describes the formation of a stable hot halo. We begin by analyzing

the evolution of the specific energy of the post-shock gas in the halo. Here, we consider

that the gas after going through an accretion shock, remains hot and close to r200. We

then express the variation of the gas specific energy, E , due to compression and radiative

loses as

Ė = −P v̇ − q/N, (5.18)

where P is the pressure, v = V/N is the specific volume, N is the number of hot gas

particles, q is the radiative cooling rate and the upper dots denote derivatives with respect

to time. The variation in time of post-shock gas specific volume is driven by an increase

in the number of shock-heated gas particles, that produce a compression, and not because

of a decrease in the volume the gas is occupying. Then, v̇ = −V Ṅ/N2, and under the

assumption of an ideal gas eq. (5.18) can be rewritten as

Ė = kBT
Ṅ

N
− q

N
, (5.19)

Ė = kBTvir
Ṁhot

Mhot
− Γcool, (5.20)

where T is the mean gas temperature, which we assume to be T = Tvir, and Mhot = µmpN

(assuming µ invariant). In eq. (5.20), Γcool = q/N refers to the cooling rate per particle

and Γheat = kBTvirṀhot/Mhot refers to the heating rate per particle. As a result, eq.

(5.20) yields

Ė = Γheat − Γcool, (5.21)

and sets the energy condition of the post-shock gas under which a halo develops a stable

hot hydrostatic atmosphere. When

Γheat > Γcool, (5.22)

the accumulative shock-heated gas at the virial radius gains the necessary pressure

through external shock heating to balance the energy loss from radiative cooling. We

follow Dekel & Birnboim (2006) and define a critical mass, Mcrit, above which halos

develop a hot atmosphere. We define Mcrit as the halo mass at which the cooling rate,

Γcool, of gas at the virial radius equals the heating rate, Γheat, produced by the accretion

shocks. In the following subsections we present the calculations for the halo mass at

which heating through accretion shocks balances cooling of gas.
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5.5.1 Virial heating rate and accretion history

In a ΛCDM cosmology, halos grow through mergers and smooth accretion. Rapid mass

accretion and mergers dynamically heat the gas when halos form, with virialisation con-

tinually transforming gravitational potential energy into kinetic energy of baryons and

dark matter. For the gaseous component, kinetic turbulent energy is transformed into

thermal energy through shocks and viscous dissipation. The increase in the halo mass

through mergers and smooth accretion therefore leads to a heating rate that depends on

the virial temperature, the accretion rate and the hot gas mass as follows

Γheat = kBTvirfhot(Ωb,0/Ωm,0)
Ṁ200

Mhot
, (5.23)

where we have replaced Ṁhot = fhot(Ωb,0/Ωm,0)Ṁ200 in eq. (5.19), fhot is given by

eqs. (5.13-5.17), and Mhot by eqs. (5.7-5.10).

The virial temperature of a halo formed at redshift z is related to the total mass Mhalo

as

Tvir = 105.3 K (M200/1012 M⊙)2/3(1 + z), (5.24)

where we assumed that the halo encloses a characteristic virial overdensity ∆c = 200

relative to the critical density at redshift z, ρcrit(z) =
(

3H2
0

8πG

)

[Ωm,0(1 + z)3 + ΩΛ,0].

To calculate the halo accretion rate, we use the analytic derivation from Chapter 2

dM(z)

dt
= 71.6 M ⊙yr−1

(

M(z)

1012M ⊙

)(

h

0.7

)

f(M0)[(1 + z) − a][Ωm,0(1 + z)3 + ΩΛ,0]1/2,

(5.25)

where f(M0) and a depend on halo mass and the linear power spectrum. This formula

gives the accretion rate at redshift z. For more details on the accretion rate model see

the §2.2.2. Note that in this Chapter (as well as in Chapter 6) we are assuming Planck

cosmology and not WMAP5 as we did in the previous chapters.

5.5.2 Cooling rate

To find halos for which the infalling gas is shock-heated and prevented from cooling onto

the inner halo, we compare the heating rate in eq. (5.23) to the gas cooling rate per

particle Γcool [erg/s],

Γcool = Λ(T, Z)/ngas(r), (5.26)
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where Λ(T, Z) [erg × cm−3s−1] is the cooling rate per unit volume and ngas is the gas

particle number density.

If both gas (ρgas) and dark matter (ρdm) are in static equilibrium within the same

potential well, we can assume that at r = r200 the density of gas is a fraction of the

dark matter density ρgas = (Ωb,0/Ωm,0)ρdm. Assuming that dark matter follows an NFW

profile (Navarro et al. 1997), then

ρgas(r200) = (Ωb,0/Ωm,0)ρs/[c(1 + c)2], (5.27)

where ρs = c3M
4πm(c)r3

200

, m(c) = ln(1 + c) − c/(1 + c), and c is the concentration calculated

from the relation derived in Chapter 4 for halos in virial equilibrium. The gas number

density evaluated at the virial radius is ngas(r200) = ρgas(r200)/µmp.

Lastly, we need to calculate the mean metallicity Z (in solar units) as a function of

redshift, to include in the cooling rate. We use the best-fitting expression from Ma

et al. (2015), who studied the galaxy mass-metallicity relation from z = 0 − 6 using high-

resolution cosmological zoom-in simulations from the Feedback in Realistic Environment

project. Their best-fitting relation,

log10(Z/Z⊙) = 0.35 log10(M∗/1010 M⊙) + 0.93e0.43z − 1.05, (5.28)

depends on redshift and stellar mass (M∗), and has proven to be in excellent agreement

with observed data from Tremonti et al. (2004), Erb et al. (2006), Mannucci et al. (2009),

Zahid et al. (2011), Steidel et al. (2014) and Sanders et al. (2015) at multiple redshifts.

We use eq. (5.28) and assume that M∗ = 0.1fbM200 (10% of gas is locked in stars).

5.5.3 Critical halo mass

In this subsection we use the energy condition of post-shock gas given by eq. (5.21) and

calculate the halo mass, Mcrit, for which the heating rate, Γheat (given by eq. 5.23), equals

the cooling rate, Γcool (given by eq. 5.26). Mcrit is a critical halo mass that represents

the halo mass above which the heating rate exceeds the cooling rate behind the shock,

and as a result the halo develops a stable hot hydrostatic atmosphere. To calculate Mcrit,

we use the toy model derived in the previous subsections, that makes use of analytic

derivations as well as best-fitting relations, such as Mhot(M200, z) (given by eqs. 5.7-5.10)

and fhot(M200, z) (given by eqs. 5.13-5.17).

The top panel of Fig. 5.11 shows Mcrit (red solid line) and the transition mass, Mhalf

(blue dashed line), as a function of redshift. Mhalf , as referred to by previous works

(Ocvirk et al. 2008; Faucher-Giguère et al. 2011; van de Voort et al. 2011, among oth-
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Figure 5.11: Top panel: Critical halo mass, Mcrit (red solid line), halo mass where the hot and
cold modes of accretion contribute equally (fhot(Mhalf(z), z) = 1/2, blue dashed
line) and critical mass obtained by the work of Dekel & Birnboim (2006) (grey
dot-dashed line) as function of redshift. Bottom panel: Fraction of hot mass in
halos with Mcrit masses as a function of redshift

ers), is the halo mass at which the hot and cold modes of accretion contribute equally

(fhot(Mhalf(z), z) = 1/2 as given by eq. 5.17). The bottom panel of Fig. 5.11 shows the

hot gas mass (normalized to the halo mass times the baryon fraction), in halos with

masses equal to Mcrit.

There are a few things we can conclude from this simple calculation. First, we find that

Mcrit agrees with Mhalf at z = 0, but both halo masses increase towards high redshift at

different rates with Mcrit always greater than Mhalf . It is not possible for Mhalf < Mcrit,

because a lack of a hot atmosphere would imply little to no hot accretion. Besides, Mcrit is

not related to Mhalf because equal hot/cold modes of accretion do not imply the existence

of a hot atmosphere or lack thereof. The opposite situation, Mhalf > Mcrit, is expected

at high redshift because massive halos are able to develop a hot atmosphere (and hence

virial shocks), despite having a large fraction of accreted gas in the cold mode due to

the large contribution from cold filaments. We caution the reader that although Mhalf

has been calculated with high accuracy in the redshift ranges 0 to 4, at higher redshifts
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(z = 4 − 6) Mhalf was calculated assuming the parameter a fixed and at z = 6 − 8 Mhalf

corresponds to the best-fit extrapolation.

Second, the bottom panel of Fig. 5.11 shows that in the redshift range z = 0 − 4,

Mhot(Mcrit)/[
Ωb,0

Ωm,0
Mcrit] ∼ 0.1. This indicates that when the hot halo becomes stable,

the hot gas mass reaches ∼ 10% of the total baryonic mass. We therefore define a mass

condition for a halo to develop a stable hot atmosphere as

Mhot
(

Ωb,0

Ωm,0

)

Mhalo

≥ 0.1, (5.29)

and test this condition for hot halo formation in the presence of feedback variations.

The toy model presented in this section assumes that the formation of the hot halo is

only driven by the heating from gravitational accretion shocks. However, in the presence

of other energy sources, like stellar or AGN, the heating rate should increase, and therefore

extra terms (like Γstellar or ΓAGN) should be added. In this case we do not compute extra

heating sources for the presence of feedback, but we still find very good agreement between

the analytical results and the numerical analysis (see §5.5.4). We next test how Mcrit

is affected by the presence different feedback implementations. To do it, we go back to

Fig. 5.6, which shows Mhot/(
Ωb,0

Ωm,0
Mcrit) as a function of halo mass for different feedback

scenarios, and we calculate the halo mass at which Mhot/(
Ωb,0

Ωm,0
Mcrit) = 0.1. From the

figure we conclude that in the weak stellar feedback scenario Mcrit ∼ 1012.2 M⊙ at z = 0,

in the strong AGN Mcrit ∼ 1011.8 M⊙, in the no AGN (but moderate) Mcrit ∼ 1011.5 M⊙,

and in the strong stellar Mcrit ∼ 1011.4 M⊙. In the case of SN feedback, the larger the

heating rate, the larger the amount of hot gas in the halo, and so the lower Mcrit. This

is in agreement with the analysis in §5.3.1. On the other hand, when the heating rate

from AGN feedback is large, gas is expelled from the halo, thus reducing the amount of

hot gas and increasing Mcrit. We find good agreement between the estimated hot halo

formation obtained from Fig. 5.6 and eq. (5.29), and the analysis in §5.2.1, where we

found that in the scenarios of strong SN and no AGN feedback, Mcrit was lower than in

scenarios of weak SN and strong AGN.

Interestingly, our calculations for the critical halo mass, Mcrit, is in very good agreement

with the calculations from Dekel & Birnboim (2006) at z = 0. In §5.5.5 we investigate

why this is the case.

5.5.4 Comparison with numerical results

In this subsection we compare our semi-analytic predictions for Mcrit presented in the

previous section, with results of our simulations. To do this, we investigate whether halos

with masses equal to Mcrit present a bimodal cooling time PDF, indicating that the large

heating rate from accretion shocks prevents gas from cooling (see §5.3 for a discussion of
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Figure 5.12: Cooling time mass-weighted PDF of gas particles from halos with masses in the
logarithmic mass range log10(Mcrit) ± 0.1 at z = 0, 1, 2, 3, 4 and 5.

cooling time PDF).

Fig. 5.12 shows the PDF of log10(tcool/tdyn) for halos with masses equal to Mcrit from

z = 0 − 5. We find that all curves have a bimodal shape and a local minimum in the

range −1 < log10(tcool/tdyn) < 1. We therefore conclude that the hot atmosphere has

been formed in these halos at each redshift, despite the increasing contribution of cold

gas from filaments.

5.5.5 Comparison with Dekel & Birnboim (2006) model

Dekel & Birnboim (2006) derived a post-shock stability criterion based on the interplay

between the cooling time and the compression time. In their derivation, Dekel & Birnboim

began by defining the adiabatic index

γeff = γ − ρq/(ρ̇E ), (5.30)

which they rewrote in terms of the compression time, defined as tcomp = Γρ/ρ̇, with Γ an

arbitrary constant and ρ = N/V , and the cooling time, tcool = E N/q, as follows

γeff = γ − Γ−1tcomp/tcool. (5.31)

They found that the shock is stable if γeff > γcrit = 2γ/(γ + 2/3), which is equivalent to

tcool > tcomp. Once the cooling time is larger, the pressure gained by compression can

balance the loss by radiative cooling, and thus support the shock. In their derivation,

the factor Γ = (3γ + 2)/[γ(3γ − 4)] was introduced to simplify the final expression in

equation (5.31).

We compare our hot halo formation condition analysis with that of Dekel & Birnboim
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(2006). We begin by writing equation (5.18) in terms of tcool and tcomp.

Ė = −P v̇ − q/N, (5.32)

Ė

E
=

P ρ̇

E ρ2
− q

NE
, (5.33)

Ė

E
= t−1

comp − t−1
cool. (5.34)

(5.35)

In the second step we substituted v̇ = −V Ṅ/N2 = −ρ̇/ρ2 and divided by E ,

and in the last step we substituted P = (γ − 1)E ρ and defined compression time as

tcomp = (γ − 1)−1ρ/ρ̇.

We conclude that our model is equivalent to Dekel & Birnboim (2006), and thus should

yield to the same results at z = 0. At z > 0 we do not expect to obtain the same

results as Dekel & Birnboim (2006) because of the different redshift dependence. In

our model Γheat ∝ Ṁhalo, whereas in Dekel & Birnboim (2006) tcomp ∝ constant. Thus

Mcritical,Dekel ∼ 6 × 1011 M⊙ for all redshifts. We believe we have improved upon the

Dekel & Birnboim (2006) model by introducing not only a redshift dependence in the

definition of Γheat, which is seen in the numerical simulations, but also a dependence on

the amount of shock-heated gas, which we find to decrease with increasing redshift at

fixed halo mass due to the presence of cold filaments (see panels in Fig. 5.8).

5.6 Conclusions

We have studied the hot hydrostatic halo formation, its dependence on feedback mecha-

nisms, hot gas mass in the halo and fraction of hot gas accretion using the EAGLE suite

of hydrodynamical simulations as well as analytic calculations.

We have analysed the PDF of cooling time of gas in the halo and found that when the

hot halo is formed, it produces a bimodality in the PDF. The bimodal shape indicates

that the hot halo reduces the cooling flows, and thus increases the hot gas mass, Mhot,

at large radii. By inspection of cooling time PDFs, we have found that the mass scale

for hot halo formation is 1011.7 M⊙ at z = 0, as originally proposed by Dekel & Birnboim

(2006).

However, the hot hydrostatic atmosphere forms in smaller (larger) halos in scenarios

of strong (weak) stellar feedback. In the case of AGN feedback, we have found that the

cooling time PDF is almost unchanged between scenarios with strong AGN and no AGN

feedback. However, the PDFs do change at higher halo masses (> 1012 M⊙).

In addition to the hot gas in the halo, we have calculated the fraction of hot mode
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gas accretion, fhot. Rather that using the maximum temperature to select shock-heated

gas particles, we have used the gas temperature and entropy after accretion and obtain

lower fhot values. We believe Tpost−shock + Spost−shock is a better method to select hot

gas accretion, because it does not include gas particles that go through a shock but

immediately cool afterwards (i.e. due to in-shock cooling or heating rate smoothing) or

are not even shock-heated but counted as hot accretion (as occurs when Tmax is affected

by stellar feedback), and therefore do not contribute to the hot halo formation process.

Finally, we have derived an semi-analytic model of hot halo formation that depends on

hot gas mass in the halo, as well as accretion rates and the fraction of hot gas accretion.

We have assumed energy conservation in the presence of radiative loses and ideal gas,

and found that the change in the internal energy of the gas depends on the cooling rate

and the heating rate. When the heating rate is larger than the cooling rate, the hot gas

in the halo gains the necessary pressure through external shock heating to balance the

energy loss by radiative cooling, and forms the hot halo.

We followed Dekel & Birnboim (2006) and defined a critical mass, Mcrit, above which

the halo develops a hot atmosphere because the gas has larger heating than cooling rate.

We have obtained Mcrit = 1011.7 M⊙ at z = 0. At higher redshift Mcrit increases and

reaches 1012.66 M⊙ at z = 8. We have compared the values of Mcrit with those of Dekel &

Birnboim (2006) and found very good excellent agreement in the redshift range z = 0−3.

At z = 0 this is expected because we showed that our stability condition expression is

equivalent to that of Dekel & Birnboim (2006). At z > 0 we have a different redshift

dependence introduced through the accretion rate, fraction of hot accretion and hot gas

mass.

The formation of a hot stable atmosphere can be considered as a preventive feedback

mechanism that decreases the gas accretion rate onto central galaxies, and thus reduces

the amount of gas available to form stars. This has been seen in hydrodynamical sim-

ulations (see e.g. Faucher-Giguère et al. 2011; van de Voort et al. 2011; Nelson et al.

2013), however, due to the complexity in the interaction between the hot halo and AGN

or stellar feedback, that modify the manner in which galaxies accrete gas, a physical

model of galaxy gas accretion is still missing. In the following chapter we make use of

the analytic calculations presented in this chapter and derive a model for gas accretion

onto galaxies that depends on the hot/cold modes of gas accretion onto halos and on the

rate of gas cooling from the hot halo.
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On the hot halo cooling flow

This chapter investigates the physics that drives the gas accretion rate onto galaxies at the center

of dark matter halos.

The manner gas falls into galaxies through cosmic time is a topic of open debate, due

to the complexity in the interaction of multiple physical mechanisms that prevent gas

in the halo from cooling. In this chapter we address this topic in detail. Using a suite

of hydrodynamical cosmological simulations, we analyse the gas accretion rate onto the

interstellar medium (ISM) and onto the galaxy. We find that the accretion rate onto

the ISM remains roughly constant in halos larger than 1011.7 M⊙, whereas the accretion

rate onto the galaxy increases with increasing halo mass and flattens in the halo mass

range 1011.7 − 1012.7 M⊙, and at redshifts z ≤ 2. The flattening is produced by the

presence of the hot halo atmosphere that acts as a preventive feedback mechanism, and

can be explained by comparing the cooling time of shock-heated gas accreted onto halos

and the time that has passed since halos developed the hot atmosphere. We derive a

physically motivated model of gas accretion onto galaxies, that depends on the rate of

gas cooling from the hot halo, on the fraction of shock-heated gas, and on the rate of

cold gas accretion. Finally, we show the model is equally successful in scenarios with

and without AGN feedback. Readers unfamiliar with this topic are encouraged to first

read §1.3 for a brief description on galaxy formation theory, and the previous chapter

(Chapter 5) for a detailed analysis of gas accretion onto halos and hot halo formation.
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6.1 Introduction

As discussed in chapters 1 and 2, dark matter halos form at the peaks of the primordial

density field, and grow in mass through mergers and smooth accretion of dark matter and

gas. Although there are recent claims that the dark matter and gas accretion rates onto

halos are tightly coupled (Wetzel & Nagai 2015), gas, unlike dark matter, follows a more

complicated physics. In the previous chapter we learned about the physical properties

of gas in halos and the impact of feedback on the evolution of the gaseous halo. In this

chapter we continue this analysis, and focus on the manner gas falls into galaxies.

There are several mechanisms that affect the way gas crosses the virial radius and

falls into galaxies. The most important are accretion shocks and feedback from stars

and black holes. Accretion shocks occur as a result of collisions between gas from the

intergalactic medium falling into the halo and the stationary hot gas already in the

halo. When accretion shocks occur, the gravitational energy of infall of gas is converted

into thermal energy. Accretion shocks are then an important heating process, that were

initially discussed by Rees & Ostriker (1977), Silk & Rees (1998) and White & Rees

(1978). These works concluded that gas in the halo will infall into the galaxy only if

the cooling radius is smaller than the virial radius. Otherwise, a hot hydrostatic halo is

formed.

When gas crosses the hot halo and cools, feedback from stars and black holes reheats it

and prevents it from falling into the galaxy. Stars and SN events produce large outflows

in the form of winds that expel gas out of the galaxy into the inner halo, and thus

produce a sort of recycling galactic fountain that acts as an extra mode of accretion onto

galaxies (see e.g. Oppenheimer et al. 2010; Übler et al. 2014). Black holes, located in

the center of the AGN, generate large radio jets that expand in the form of bubbles on

scales > 30kpc, and are then able to heat the gas from the surrounding halo (e.g. Voit

& Donahue 2005; Fabian et al. 2006; De Young 2010). This is generally referred to as

“radio mode” feedback (Bower et al. 2006; Hopkins et al. 2007), that quenches the diffuse

accretion rates onto galaxies (Croton et al. 2006; Sijacki et al. 2007; Martizzi et al. 2012;

Dubois et al. 2012, 2013). Due to the complexity in the interaction of all the possible

mechanisms that modify the manner in which galaxies accrete gas, a physical model

of galaxy gas accretion is still missing. In this work, however, we make an attempt in

modelling the gas accretion rates onto galaxies.

To understand the manner gas falls into galaxies, we first investigated the physical state

of the gaseous halo, and the modes of gas accretion onto halos. In Chapter 5 we derive

a new criteria to determine when the halo develops a hot hydrostatic atmosphere, based

on the different modes of gas accretion onto halos. Namely, hot accretion, characterized

by gas that shock-heats to the halo virial temperature, and cold accretion, that tends
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to be filamentary, clumpy, of higher density than the hot mode, and strongly correlated

with the dark matter filaments that feed halos (e.g. Kereš et al. 2005; Ocvirk et al. 2008;

Dekel et al. 2009; van de Voort et al. 2011; Faucher-Giguère et al. 2011; Nelson et al.

2013; Woods et al. 2014). We calculate a heating rate produced by accretion shocks

and compare it to the gas cooling rate, and find that dark matter halos that are above

a critical mass threshold of 1011.7 M⊙, are able to develop a hot stable atmosphere, in

agreement with previous works (Birnboim & Dekel 2003; Dekel & Birnboim 2006).

The hot halo formation and the distinction between two cooling regimes have been

implemented in semi-analytic models of galaxy formation (SAMs) since the work of White

& Frenk (1991), who modelled the transition between rapid and slow cooling regimes

depending on the cooling radius. The cooling radius (rcool) is defined as a radial scale

below which all gas in the halo is able to cool, and it is obtained by finding where the

cooling time (that depends on rcool through the gas density) is equal to the dynamical

time. If rcool is smaller than the virial radius (r200), then a hot atmosphere is formed,

and gas accretion onto galaxies goes from being in the rapid cooling regime, to the slow

cooling regime. Hydrodynamical simulations however, have shown that there are multiple

overlapping gas components in the halo as a function of radius. These components are

crudely described as quasi-static and inflowing material (see Nelson et al. 2015 for latest

analysis and references therein). The hot/cold modes of accretion are in fact able to

coexist in massive halos at high redshift (Dekel et al. 2009, see Chapter 5 for a description)

and feed the galaxy at the same time. The co-evolution between the different modes of

accretion has not been implemented in SAMs until recently. Cousin et al. (2015) included

a two phase smooth baryonic accretion, with the hot and cold component built over the

smooth dark matter accretion, whereas Lu et al. (2015) modelled a circum-halo medium,

assumed to be preheated up to a certain entropy level, to reduce the baryonic accretion.

In this chapter, we aim to derive a physically motivated model of gas accretion onto

galaxies, that is in perfect agreement with numerical simulations, depends on feedback

and hot/cold modes of accretion, and can potentially be implemented in SAMs. To do it

we begin by considering that the distinction from hot to cold accretion is not sharp. In

Chapter 5 we showed that the fraction of hot accretion onto halos is a smooth function

that goes from being 0 in low-mass halos (< 1011 M⊙) to 1 in high-mass halos (> 1011 M⊙),

since halos that develop a stable hot atmosphere still accrete unshocked gas. We also

take into account feedback that, as we showed in Chapter 5, affects the mass-scale of hot

halo formation and therefore impacts on the distribution of gas in the halo. Feedback

will then be included through the gas density profile, as an indicator of the distribution

hot gas cooling in the halo.

This chapter is organized as follows. In §6.2 we briefly describe the numerical simula-

tions used to study the gas accretion rates onto galaxies (for a more detailed description
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Table 6.1: List of simulations. From left-to-right the columns show: simulation identifier; co-
moving box size; number of dark matter particles (there are equally many bary-
onic particles); initial baryonic particle mass; dark matter particle mass; comoving
(Plummer-equivalent) gravitational softening; maximum physical softening.

Simulation L N mb mdm εcom εprop

(cMpc) (M ⊙) (M ⊙) (ckpc) (pkpc)

L100N1504/REF 100 15043 1.81 × 106 9.70 × 106 2.66 0.70
L100N0752/REF 100 7523 1.44 × 107 7.76 × 107 5.32 1.40
L050N0752/REF 50 7523 1.81 × 106 9.70 × 106 2.66 0.70
L050N0376/REF 50 3763 1.44 × 107 7.76 × 107 5.32 1.40
L025N0752/REF 25 7523 2.26 × 105 1.21 × 106 1.33 0.35
L025N0376/REF 25 3763 1.81 × 106 9.70 × 106 2.66 0.70
L025N0376/No Feedback 25 3763 1.81 × 106 9.70 × 106 2.66 0.70
L050N0752/No AGN 25 3763 1.81 × 106 9.70 × 106 2.66 0.70
L050N0752/Strong AGN 25 3763 1.81 × 106 9.70 × 106 2.66 0.70

see §5.2), and the method followed to measure the accretion rates. In §6.3 we analyse the

total gas accretion rates onto galaxies from the EAGLE simulations as a function of halo

mass and redshift, as well as the hot and cold modes of accretion. In §6.4 we investigate

the density profile of gas in halos and derive a best-fitting model for the gas density

profile. Next, we derive a physically motivated model of gas accretion onto galaxies in

§6.5, that accurately reproduces the gas accretion rates from the EAGLE simulations.

We analyze the role of AGN in the rates of gas cooling from the hot halo in §6.6, and

show that the model from §6.5 is equally successful in scenarios with and without AGN

feedback. Finally, we summarize and conclude in §6.7.

Throughout this chapter (as well as in Chapter 5) we define the halo mass, M200, as

all matter contained within r200, radius where the mean density is 200 times the critical

background density. We denote derivatives with respect to time as upper dots, therefore

Ṁgas,galaxy denotes gas accretion rate onto galaxies and Ṁgas,halos onto halos.

6.2 Simulations

In this work we study gas accretion onto galaxies using a set of cosmological, hydrodynam-

ical simulations from the Evolution and Assembly of GaLaxies and their Environments

project (EAGLE; Schaye et al. 2015). EAGLE simulations were run using a modified

version of GADGET 3 (Springel 2005), a N -Body Tree-PM smoothed particle hydrody-

namics (SPH) code. In order to assess the numerical convergence we use simulations with

different box sizes (ranging from 25 to 100 comoving Mpc) and particle numbers (ranging

from 3763 to 15043). The simulation names contain strings of the form LxxxNyyyy, where

xxx is the simulation box size in comoving Mpc and yyyy is the cube root of the number

of particles per species (where the number of baryonic particles is equal to the number

of dark mater particles). The simulations assume a ΛCDM cosmology with the parame-
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ters given by Planck-1 data (Planck Collaboration et al. 2014), Ωm,0 = 1 − ΩΛ = 0.307,

Ωb,0 = 0.04825, h = 0.6777, σ8 = 0.8288, ns = 0.9611. The starting and final redshift of

all simulations is z = 127 and z = 0, respectively.

In the previous chapter (§5.2) we provide a more complete description of the mod-

eling of EAGLE simulations, but see Table 6.1 for a summary of the simulations used.

Throughout this work we use the reference simulations (hereafter REF), that are in very

good agreement with observables, e.g. the galaxy stellar mass function (Schaye et al.

2015; Crain et al. 2015). For the purpose of convergence analysis, we will refer to sim-

ulations with the mass and spatial resolution of L050N0376 as low-resolution, with the

same resolution of L025N0376 as intermediate-resolution runs, and with the resolution

of L025N0752 as high-resolution runs.

6.2.1 Methodology

We follow the methodology described in Chapter 5 to identify resolved halos and build

merger trees. We use these merger trees to link halos through the snapshots and calculate

the gas accretion onto halos and their central galaxies. We select gas particles accreted

onto halos by performing an ID matching between particles within linked halos from

consecutive snapshots. Therefore particles that are new to the system, and are within

the virial radius are labeled as accreted particles in the redshift range zi < z < zj .

Different methods have been employed to determine gas accretion onto galaxies. For

example, Faucher-Giguère et al. (2011) measured accretion rates through shells of pre-

scribed radii. In order to differentiate outflows from inflowing material, they added the

particles that intersect a given shell and defined the net accretion as Ṁ ∝ ∑

p Mpvp/∆rp

(with Mp particle mass, vp velocity vector and ∆rp thickness of shell). They classified the

net accretion rates as inward or outward according to the direction of the velocity vector.

A different approach was carried by van de Voort et al. (2011) who, in order to distinguish

the galaxy from the halo, used a cut in the hydrogen number density (nH > 0.1 cm−3)

to define the interstellar medium (ISM), and considered particles that are part of the

ISM or stellar mass at zi, but which were gaseous and not part of the ISM at zj to have

been accreted onto a galaxy at zi < z < zj . Similarly, Nelson et al. (2013) made use of

a density-temperature (ρ − T ) cut criterion (log10(T/K) − 0.25 log10(ρ/ρcrit,z=0) < 4.11,

with ρcrit,z=0 critical density today), along with a radial cut (< 0.15 × r200). They con-

sidered a gas element to have accreted onto a galaxy if it belonged to that galaxy at zj ,

and either crossed the phase space cut in ρ − T or the radial cut during zi < z < zj .

In this work we are interested in investigating whether the hot halo impacts on the

rate of inflowing gas onto galaxies. We follow the method of van de Voort et al. (2011)

and consider the ISM to be formed by all particles within a sphere of radius 0.15 × r200

(centered in the minimum gravitational potential) that are star-forming or that have
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nH > 0.01 cm−3 and T < 105 K (atomic ISM). We next calculate two rates of gas

accretion, gas accretion in the vicinity of the galaxy, Ṁ0.15r200 and gas accretion onto

the ISM, ṀISM. Ṁ0.15r200 considers gas that cools from the gaseous halo and crosses the

radial boundary 0.15 × r200 during zi < z < zj , whereas ṀISM considers gas that crosses

the radial boundary and is star-forming or crosses the phase space cut nH − T during

zi < z < zj .

The top panel of Fig. 6.1 shows Ṁ0.15r200 (solid lines) and ṀISM (dashed lines) as a

function of halo mass, calculated from the L100N1504/REF simulation. For a comparison,

the figure also includes the gas accretion of star-forming particles, ṀSFR>0 (dot-dashed

lines), which is (on average) a factor of 2 lower than ṀISM. In this case, ṀSFR>0 considers

gas that crosses the radial boundary and is star-forming during zi < z < zj . It can be

seen that in large halos (> 1012.5 M⊙), Ṁ0.15r200 increases with halo mass, therefore it

is dominated by gas cooling from the hot halo. However, ṀISM and ṀSFR>0 remain

roughly constant with increasing halo mass, and only increase by ∼ 0.5dex in the halo

mass range 1012 − 1014 M⊙. The bottom panel of Fig. 6.1 shows the specific accretion

rate of the vicinity of the galaxy, ISM and star-forming particles. The specific accretion

onto the ISM is calculated by taking the ratio between ṀISM and the total mass of gas

from the halo that forms part of the ISM. The specific accretion onto the r < 0.15 × r200

region is calculated by taking the ratio between Ṁ0.15r200 and the total gas mass from the

halo contained within 0.15 × r200. Similarly, the specific accretion rate of star-forming

particles is calculated by taking the ratio between ṀSFR>0 and the total mass of star-

forming particles within 0.15 × r200. The panel shows that the specific accretion rates of

the ISM, galaxy region and star-forming particles are roughly the same, with a maximum

factor of 1.6 difference between ṀISM/MISM and Ṁ0.15r200/M0.15r200 in 1010 M⊙ halos and

2.6 between ṀSFR>0/MSFR>0 and Ṁ0.15r200/M0.15r200 in 1011.5 M⊙ halos.

We find that there is a median factor of 1.3 difference between the specific accretion

rates of the ISM and galaxy region, we then assume that there is an accretion rate

function, κ, that relates Ṁ0.15r200 and ṀISM as

κ =
ṀISM

Ṁ0.15r200

, (6.1)

=
1

1.3

MISM

M0.15r200

, (6.2)

=
1

1.3

〈ρISM〉0.15r200

〈ρgas〉0.15r200

, (6.3)

where in eq. (6.2) we use the fact that 1.3ṀISM/MISM = Ṁ0.15r200/M0.15r200 . To derive

expression (6.3), we assume that all gas from the ISM and the galaxy region is contained

within 0.15 × r200, so that the ratio between the masses is equal to the ratio between
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their average densities. Therefore, 〈ρISM〉0.15r200 is the mean density of the ISM and

〈ρgas〉0.15r200 is the mean enclosed gas density within a sphere of radius r = 0.15 × r200.

Clearly ṀISM strongly depends on Ṁ0.15r200 . In this work we first focus on modelling and

analyzing how the gas cooling from the hot halo impacts on Ṁ0.15r200 (§6.5.2), then we

show that we can estimate ṀISM from Ṁ0.15r200 using eq. (6.3) as follows

ṀISM =
1

1.3

〈ρISM〉0.15r200

〈ρgas〉0.15r200

Ṁ0.15r200 (6.4)

(§6.5.3).

In numerical simulations it is challenging to separate the galaxy from the surrounding

halo. We define the atomic ISM through radial and nH−T cuts, but the galaxy can extend

beyond the ISM because it also contains gas heated by SN events or expelled by the

central AGN. Therefore, we assume that the gas accretion rate onto a galaxy is the same

as the accretion rate measured in the vicinity of the galaxy (Ṁgas,galaxy = Ṁ0.15r200). To

distinguish between gas that accreted onto the halo and galaxy, we denote Ṁgas,galaxy to

gas particles that have crossed the radius 0.15×r200 during the redshift range zi < z < zj ,

whereas Ṁgas,halo refers to gas particles that have crossed r200 during the redshift range

zi < z < zj .

When calculating gas accretion onto galaxies and halos, the hot and cold modes of

accretion are generally estimated by following the temperature history of the accreted

gas, see e.g. Faucher-Giguère et al. (2011) and van de Voort et al. (2011). However, in

Chapter 5 we concluded that selecting gas particles according to their temperature and

entropy (Tpost−shock and Spost−shock, respectively) after accretion was a better method

to determine the fraction of hot/cold accretion. This is because it does not include gas

particles that go through a shock but immediately cool afterwards (i.e. due to in-shock

cooling or heating rate smoothing, for a discussion the reader is encourage to read §5.2.2

and §5.4.1). Then, throughout this work, we select hot accreted gas particles as those that,

after being accreted, have temperatures and entropies larger than Tpost−shock = 105.5 K

and Spost−shock = 107.2 K cm2, respectively.

6.3 Gas accretion rates

In this section we calculate the rates of gas accretion onto halos and galaxies from the

EAGLE simulations, and follow the methodology described in §6.2.1. We first analyse

numerical convergence. We find excellent agreement between the accretion rates onto

halos and galaxies from simulations with the same resolution and different box size, but

not between simulations with different numerical resolution and same box size. In the

latter case we find that Ṁgas,galaxy increases by up to a factor of 10 if the mass resolution is

increased by a factor of 64. For a detailed analysis of numerical convergence see following
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Figure 6.1: Top panel: accretion rate of gas onto the central galaxies of dark matter halos as a
function of halo mass in the redshift range 0 ≤ z < 0.1. The solid line corresponds to
gas accretion calculated by only counting gas particles that crossed 0.15×r200 during
the consecutive snapshots, whereas the dashed line and dot-dashed line correspond
to gas accretion onto the ISM and onto the 0.15 × r200 regions of star-forming
particles. Bottom panel: growth rate of gas forming part of the central galaxies
(solid line), the ISM (dashed line) and star-forming (dot-dashed line). In the panels,
the grey and cyan shade regions enclosing the median values of Ṁgas and Ṁgas/Mgas

correspond to the 1σ scatter (16-84th percentiles) onto the 0.15 × r200 region and
ISM, respectively. The 1σ scatter of ṀSFR>0(and ṀSFR>0/MSFR>0), not included
in the figure, is (on average) 0.3 dex.
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subsection. Throughout this work we use the intermediate-resolution simulations, which

were carried out for different box sizes (from 25 to 100 comoving Mpc), and cover a large

range in halo mass. In §6.3.2, we calculate the accretion rates onto halos and galaxies,

covering four order of magnitude in halo mass (from 1010 to 1014 M⊙) and the redshift

ranges from 0 to 9. In §6.3.3 we analyse the hot and cold modes of accretion of gas onto

galaxies.

6.3.1 Numerical convergence

In this section we investigate how numerical resolution impacts on the rates of gas accre-

tion in the EAGLE simulations. Fig. 6.2 shows the total gas accretion onto halos (top

panel) and their central galaxies (bottom panel) in the redshift range 0 ≤ z < 0.1. Both

panels show that the accretion rates increase with increasing halo mass, and that numer-

ical convergence is achieved in the process, but only between same-resolution simulations

(between L0100N1504 and L0025N0376 and between L0100N0752 and L0050N0376). Nu-

merical resolution is directly related to the efficiency of feedback mechanisms, the larger

the resolution in the simulation the more efficient the implemented feedback, which gives

raise to the need for (re-)calibration (see Schaye et al. 2015 for a discussion). We then

do not expect strong convergence (between different-resolution simulations) in the gas

accretion rates onto galaxies that, due to recycling winds from SN and AGN outflows, is

feedback dependent. However, we find interesting that we do not have strong convergence

in the accretion rates onto halos, which were found to be invariant to feedback (van de

Voort et al. 2011). There are a few reasons that can explain this and that are not related

to feedback. One is accretion shocks, it is possible that the low-resolution simulations

(shown as purple curves in the panels) do not resolve the shocks properly (Creasey et al.

2011, or see §5.2.2 for a discussion). Hot accreted gas tends to cross the virial radius

multiple times before settling onto the hot halo, thus producing an increase in the rate

of gas accretion. If the shocks are not well resolved in regions where gas particles do

not have long cooling times, hot accreted gas will cool rapidly, particularly around low-

mass halos (< 1012 M⊙). However, the overcooling is not significant in high-mass halos

(> 1012 M⊙) because the cooling time of the gas particles is too long, as a result there is

better convergence between the low- and the intermediate-resolution simulations (yellow

curves) in the high-mass end. Another possible explanation is the method used in this

work to calculate accretion rates. Rather than following the entire mass growth of the

halos and dividing it by the time step (as done in Chapter 3), individual particles that

cross the virial radius are counted. Therefore increasing resolution leads to an increasing

inflow of particles.

It is important to note that the top panel from Fig. 6.2 shows an abrupt drop in

the accretion rates from the intermediate-resolution simulations (yellow curves) in halos
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Figure 6.2: Accretion rate of gas onto halos (top panel) and their central galaxies (bottom
panel) as a function of halo mass in the redshift range 0 ≤ z < 0.1. The curves
show the median values of the total accretion rates of halos in logarithmic mass bins
of 0.2, each mass bin contains at least 10 halos. To analyze numerical convergence,
we compare accretion rates from simulations with different box sizes and number
of particles and therefore different resolution. We classify the simulations as high-
resolution (blue curves), intermediate-resolution (yellow ruves) and low-resolution
(purple curves). We are able to find numerical convergence between same-resolution
simulations.
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smaller than 1010 M⊙. This can be a numerical artifact because such drop is not seen

in the accretion rates from the large-resolution simulation (blue curve). We therefore

set the minimum halo mass for accretion onto halos (and their inner galaxies) to corre-

spond to 1000 dark matter particles (∼ 1010 M⊙ halo mass for the intermediate-resolution

simulations). The galaxy accretion rates (shown in the bottom panel of Fig. 6.2) in-

crease by up to a factor of 10 (Ṁgas,galaxy = 1 M⊙/yr from L0025N0752 with respect

to Ṁgas,galaxy = 0.1 M⊙/yr from L0050N0376 at ∼ 1011.5 M⊙) if the mass resolution is

increased by a factor of 64. This is opposite to van de Voort et al. (2011) who found a

decrease, but also measured accretion through a density-cut, rather than only a radial

cut.

Throughout this work we use the intermediate-resolution simulations, since those were

carried out for different box sizes (from 25 to 100 comoving Mpc), they are more suitable

to cover a large range in halo mass.

6.3.2 Accretion rates onto galaxies and halos

In this section we investigate the gas accretion rates onto halos and galaxies in more

detail. Fig. 6.3 shows the total gas accretion rate onto halos (bottom-left panel) and

onto galaxies (bottom-right panel) over many redshift ranges. The solid lines correspond

to the median gas accretion rates from the L100N1504/REF simulation. In this case

we calculated the accretion rates by adding the mass of all the accreted particles onto

individual halos and dividing by the time interval between the snapshots. The figure

shows the median accretion rates of stack of halos separated in logarithmic mass bins

of 0.2. The dashed lines correspond to the extended analytic accretion rates times the

baryon fraction (fb) derived in Chapter 4. In this case, we are not using the universal

baryon fraction (funiv
b = Ωb,0/Ωm,0 = 0.157), instead, we find that in order to obtain

a good agreement between the curves at high redshift, fb must be fb = 0.1. This is

in agreement with Schaller et al. (2015), who calculated the mass fractions of baryons

within r200 and found that the baryon fractions are much lower than the universal value

for all halos smaller than 1014 M⊙, i.e. fb ≈ 0.05 for 1012 M⊙ halos and fb ≈ 0.1 for

1013 M⊙ halos. In the figure, all the curves are coloured according to the redshift interval,

as indicated in the legends. The top panels show the 1σ scatter of Ṁgas,halo (top-left)

and Ṁgas,galaxy (top-right) for each mass bin.

We find that the low-redshift accretion rates onto halos deviate from the analytic

prediction of Chapter 4. This is due to feedback mechanisms that change the halo

population. We find that while the Ṁgas,halo curves taken from simulations with different

feedback implementations disagree with the model of Chapter 4 (but are in very good

agreement with each other, as also shown by van de Voort et al. 2011), Ṁgas,halo median

values from the no feedback simulations are in perfect agreement with the model. At high
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Figure 6.3: Accretion rates onto halos (bottom-left panel) and galaxies (bottom-right panel)
as a function of halo mass for a large range of redshift. The curves are colored
matching the redshift interval indicated in the legends at which they were calculated.
The solid curves correspond to the accretion rates taken from the L100N1504/REF
simulation, whereas the dashed curves correspond to the extended analytic model
derived in Chapter 4 for halo accretion rates. The 1σ scatter (16-84th percentiles)
of the median accretion rates onto halos and galaxies are shown in the top-left and
top-right panel, respectively.

halo masses, a possible explanation for this discrepancy is that AGN feedback expels most

of the gas from the halo, so that the gas remains hot and crosses the virial radius multiple

times generating a recycling effect that increases the accretion rate in large halos. In small

halos the fact that the accretion rates are lower than the analytic prediction is less easily

understood, because at these halo masses AGN is not thought to have a large impact,

and stellar feedback is not a sufficient strong mechanism to lower the halo accretion rates.

The signature of low accretion onto low-mass halos and high-accretion onto high mass

halos is also seen in the redshift range 1.0 to 1.26 and 2.01 to 2.24. As expected, at

higher redshifts the accretion curves are in much better quantitative agreement with the

analytic model.

We look for the best-fit expression that reproduces the halo gas accretion rates in the

presence of feedback from the REF model. We find it to be
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log10 Ṁgas,halo = az≤4(z) + bz≤4(z)x + cz≤4(z)x2, (6.5)

az≤4(z) = 0.830 + 0.553z − 0.0523z2, (6.6)

bz≤4(z) = 1.436 − 0.149z + 0.007z2, (6.7)

cz≤4(z) = −0.134 + 0.099z − 0.023z2, (6.8)

x = log10(M200/1012 M⊙), (6.9)

if 0 ≤ z ≤ 4 and

log10 Ṁgas,halo = az>4(z) + bz>4(z)x, (6.10)

az>4(z) = 3.287 − 0.401z + 0.045z2, (6.11)

bz>4(z) = 1.016 + 0.003z + 0.002z2. (6.12)

if z > 4.

The bottom-right panel of Fig. 6.3 shows that the gas accretion rate onto galaxies is

quite different from those onto halos. Although it initially increases with halo mass, it

flattens in the halo mass range 1011.7 −1012.7 M⊙, particularly at z ≤ 2. The flattening is

produced by the presence of the hot halo atmosphere, which forms in ∼ 1011.7 M⊙ halos

at z = 0 − 4 (Chapter 5) and thus prevents gas from cooling and falling into the galaxy

region. Our galaxy accretion rates are in close agreement with other simulations (Kereš

et al. 2005; Ocvirk et al. 2008; Faucher-Giguère et al. 2011; van de Voort et al. 2011;

Nelson et al. 2013).

We aim to provide a physical understanding of gas accretion onto galaxies. To do so, in

the following subsection we investigate the impact of feedback mechanisms on galaxy gas

accretion as well as the hot and cold contributions to the total gas accretion rates onto

galaxies. In §6.5.2 we derive a semi-analytic, physically motivated model that reproduces

the solid curves shown in the right panel of Fig. 6.3.

6.3.2.1 Impact of feedback and hydrodynamics

It has been shown that the inflow rate of gas onto galaxies not only depends sensitively on

definition (as discussed in Section 6.2.1), but also on feedback physics (e.g. Oppenheimer

et al. 2010; van de Voort et al. 2011; Faucher-Giguère et al. 2011; Nelson et al. 2015;

Übler et al. 2014). Recently, Nelson et al. (2015) compared two simulations run with the

AREPO code, while one included energetic feedback from star formation driven winds
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Figure 6.4: Gas accretion rate onto central galaxies as a function of halo mass in the redshift
range 0 ≤ z < 0.1. The top panel compares accretion rates from same-resolution
simulations (L025N0376 box) but with standard stellar feedback (REF, solid or-
ange line), strong stellar feedback (red short-dashed line), weak stellar feedback
(purple long-dashed line) and no stellar feedback (blue dot-dashed line). The mid-
dle panel compares the accretion rates calculated from the L050N0752 simulations
that include standard AGN feedback (REF, solid orange line), no AGN feedback
(purple short-dashed line) and strong AGN feedback (blue long-dashed line). The
bottom panel shows the same as the middle and top panel, but in this case the
curves correspond to the accretion rates calculated from the L025N0376/REF (or-
ange solid line), L025N0376/NoFeedback Anarchy (purple short-dashed line) and
L025N0376/NoFeedback Gadget (blue long dashed line) simulations. In the panels
the error bars show the 16-84th percentiles.
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as well as supermassive black holes, the other did not include any treatment of metal

line cooling, stellar or associated black hole feedback. They found that feedback strongly

suppresses the net accretion rate onto central galaxies (counted as the number of gas

tracers crossing the radius 0.15r200) by a factor of ∼3 at z = 5, and a factor of ∼10

at z = 1. A similar conclusion was reached by van de Voort et al. (2011), who showed

that the effects of stellar feedback and metal-line cooling are much stronger for accretion

onto galaxies than for accretion onto halos, and can result in differences of an order of

magnitude.

In scenarios of strong stellar feedback, the galaxy accretion rates are higher due to

‘recycling accretion’. Stellar driven winds blow gas out of the galaxy, but not out of

the halo, as a result the same gas elements are accreted onto the galaxy multiple times

(Oppenheimer et al. 2010). Übler et al. (2014) implemented a hybrid thermal/kinetic

stellar feedback scheme, and calculated the gas accretion histories onto discs as a function

of cosmic time. They found that the re-accreted gas can be as large as a factor of 10

in the strong feedback models with respect to weak feedback, and tends to dominate

the net accretion at z < 1. To investigate the effect of stellar feedback on the galaxies

accretion rate from the EAGLE simulations, we compare the reference model with same

resolution simulations (the L025N0376 case) that include strong and weak stellar feedback

(StrongFB and WeakFB, respectively). The REF, StrongFB and WeakFB simulations

employ the same feedback prescription and choice of parameters for AGN feedback, but

the energy budget expelled by the stellar feedback is varied. In the REF model the

probability that a neighbouring SPH particle is heated is determined by the fraction of

the energy, which depends on the maximum (fth,max = 3.0) and minimum (fth,min =

0.3) threshold values. In the StrongFB and WeakFB models the thresholds change as

fth,max = 6.0 and fth,min = 0.6 for the StrongFB case, and fth,max = 1.5 and fth,min = 0.15

for the WeakFB case (for more details see Schaye et al. 2015).

Fig. 6.4 shows the accretion rate of gas onto the central galaxies of dark matter halos

as a function of halo mass in the redshift range 0 ≤ z < 0.1. The top panel compares

the accretion rates between the REF model (orange solid line), StrongFB model (red

short-dashed line), WeakFB model (purple long-dashed line) and No stellar FB model

(blue dot-dashed line, where stellar feedback is switched off). The panel shows that while

there is no strong difference in Ṁgas,galaxy between the REF and StrongFB models (on

average the difference is less than 0.3 dex). In halos larger than 1011 M⊙ the accretion

rate decreases when stellar feedback is weak (by up to 0.6 dex) or switched off (by up to

1.5 dex). As discussed in the previous paragraph, the main reason for these differences

is the decrease in the recycling accretion due to stellar winds, that dominates Ṁgas,galaxy

at low redshift.

We next investigate the effect of AGN feedback on the gas accretion onto central
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galaxies. It is well known that the central supermassive black holes observed in many

massive galaxies expel large amounts of gas in the form of jets (radio mode feedback).

The jets heat the gas in the surrounding circumgalactic medium and prevent it from

cooling and falling into the central disc (e.g. Dubois et al. 2012). To understand how

AGN feedback alters Ṁgas,galaxy in massive halos, we compare simulations that include

the same stellar feedback scheme but different AGN feedback, varying from no feedback,

standard feedback (REF model), to strong AGN feedback. In the EAGLE simulations,

the main difference between REF and Strong AGN simulations is the temperature incre-

ment of stochastic AGN heating (∆TAGN), which is ∆TAGN = 108.5 K in the REF model

and ∆TAGN = 109.5 K in the Strong AGN model. The middle panel of Fig. 6.4 shows

Ṁgas,galaxy from the REF model (orange solid line), from the no AGN feedback model

(purple short-dashed line) and from the strong AGN feedback model (blue long-dashed

line). As expected, AGN feedback impacts on Ṁgas,galaxy in massive halos (> 1011.5 M⊙)

by decreasing the rate of inflow by up to 0.6 dex for the standard AGN feedback, and

up to 0.8 dex in the strong AGN feedback in 1012.5 M⊙ halos, with respect to the galaxy

accretion rate from the no AGN simulation. We investigate the impact of AGN feedback

on Ṁgas,galaxy in more detail in §6.6, where we analyse the relation between AGN feedback

and the hot halo cooling flow.

Finally, we compare simulations with different hydrodynamics schemes. In Chapter 5

we discuss the differences between the standard SPH code GADGET and a more recent

formulation of SPH included in the EALGE simulations named Anarchy (Dalla Vecchia

2016 in prep.). We find that while gas mixing is largely suppressed in GADGET, Anarchy

is able to mix phases in contact discontinuity allowing dense clumps to dissolve into the

hot halo. As a result the fraction of hot gas accretion onto halos is lower (by up to

0.2 dex) in the GADGET simulation with respect to its Anarchy counterpart. In the

bottom panel of Fig. 6.4 we compare the gas accretion rates onto galaxies calculated

from the REF (orange solid line), the NoFeedback/Anarchy (purple short-dashed line)

and NoFeedback/GADGET (blue long-dashed line) simulations. The panel shows that in

the absence of feedback the gas accretion rates onto galaxies is larger (by up to an order of

magnitude) in halos smaller than 1011.5 M⊙. In larger halos we find very good agreement

between accretion rates. In this last case we caution the reader that we are comparing

same-resolution simulations run in the L025N0376 box, as a result the number of halos

above 1012 M⊙ is ∼10 in each mass bin and therefore it does not represent a complete

sample.

In the following subsection we investigate the contributions of hot and cold modes in

the galaxy accretion rates, and further analyse how these galaxy hot/cold rates change

with feedback and hydrodynamics.
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6.3.3 Hot and cold modes of accretion

When gas crosses the virial radius it can either experience a shock and be heated to the

halo virial temperature or infall into the halo unperturbed. In Chapter 5 we calculate

the fractions of hot and cold accretion modes using the EAGLE simulations, and find the

best-fit expression for the fractions as a function of halo mass and redshift to be

fhot(x, z) = [exp(a(z)[x − log10 M1/2(z)]) + 1]−1, (6.13)

x = log10(M200/1012 M⊙), (6.14)

a(z) =



















−4.301 × 10−1.269z̃+1.288z̃2
if 0 ≤ z < 2,

−1.080 × 100.810z̃−0.423z̃2
if 2 ≤ z < 4,

−2.471 if z ≥ 4,

(6.15)

z̃ = log10(1 + z), (6.16)

M1/2(z) =



















−0.149 + 0.217z + 0.067z2 if 0 ≤ z < 2,

−0.248 + 0.534z − 0.069z2 if 2 ≤ z < 4,

0.724 + 0.015z if z ≥ 4,

(6.17)

In this section we extend this analysis by focusing on the modes of accretion onto

galaxies. We select gas particles using the radial cut (0.15 × r200) and separate the gas

accretion rates into the two modes by following the thermal properties of the particles

(see §6.2.1 for a description on how we calculate hot/cold gas accretion). We then obtain

a cold mode of gas accretion onto the galaxy that directly contributes to the SFR. As

well as a hot mode of gas accretion, that it is formed by the gas cooling from the hot

halo, hereafter ‘hot halo cooling flow’.

Fig. 6.5 shows the total accretion rate onto galaxies (black solid lines), the hot mode

of gas accretion (short-dashed red lines) and the cold mode of gas accretion (long-dashed

blue lines) for different redshift ranges 0 ≤ z < 0.1 (top left panel), 1.0 ≤ z < 1.26 (top

right panel), 2.01 ≤ z < 2.24 (bottom left panel) and 3.02 ≤ z < 3.53 (bottom right

panel). We find that when Ṁgas,galaxy flattens, it changes from being cold-mode domi-

nated to hot-mode dominated. As a result, in > 1012.7 M⊙ halos, Ṁgas,galaxy increases

with increasing halo mass while being hot dominated, meaning that there is a halo mass

scale above which cooling flows from the hot halo are able to develop.

The fact that gas cooling from the hot halo raises Ṁgas,galaxy can be explained by

comparing the typical cooling time of shock-heated gas, with the time that has passed
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Figure 6.5: Gas accretion rates onto galaxies as a function of halo mass in the redshift ranges
0 ≤ z < 0.1 (top left panel), 1 ≤ z < 1.26 (top right panel), 2 ≤ z < 2.24 (bottom
left panel) and 3 ≤ z < 3.53 (bottom right panel). The black solid curves correspond
to the total gas accretion rates (both hot and cold gas are included), whereas the
red short dashed lines and blue long dashed line correspond to the hot and cold
modes of gas accretion, respectively. As can be seen from the panels, cold accretion
always dominates in small halos (e.g. < 1011.5 M⊙ at z = 0), whereas hot accretion
dominates in large halos at late times. The accretion rates were calculated averaging
the rates from halos separated in logarithmic mass bins of 0.2, that contained at least
10 halos.
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since halos developed the hot atmosphere. For instance, a 1012.0 M⊙ halo at z = 0 had

a mass of 1011.7 M⊙ at z ≈ 1.16 (according to the analytic model of halo MAH from

Chapter 2). Since 1011.7 M⊙ is the mass scale of hot halo formation, we conclude that

a 1012 M⊙ halo formed its hot atmosphere at z = 1.16, when most of the shock-heated

gas had a cooling time of ≈ 10Gyr (see §5.3). Since only 8.53Gyr passed between the

redshift range 0 to 1.16, not all the hot gas in the halo has been able to cool. This

produces a flattening in the gas accretion rates onto galaxies from halos with masses

between 1011.7 and 1012.7 M⊙. Larger halos (≫ 1012 M⊙) on the other hand, that formed

their hot atmospheres earlier (more than 10 Gyr ago), contain gas that is able to cool,

therefore Ṁgas,galaxy increases with increasing halo mass.

At z = 0 there are no cold filaments penetrating the hot halo and delivering cold gas

within galaxies, but these are present at z = 2 (see §5.3). We therefore expect the amount

of cold accretion to increase towards high redshift at fixed halo mass. In Chapter 5 we

compare two different methods to select particles accreted hot or cold based on the

maximum temperature (Tmax) ever reached by the gas particle and the temperature and

entropy (Tpost−shock + Spost−shock) of the gas particle after being accreted. By applying

the Tmax method, which has been the most commonly used (e.g. Kereš et al. 2005, 2009;

Faucher-Giguère et al. 2011; van de Voort et al. 2011; Nelson et al. 2013, among others),

we find that the fraction of hot accretion onto halos is in very good agreement with van

de Voort et al. (2011), as it decreases with increasing redshift at fixed halo mass.

However, the hot/cold modes of accretion onto galaxies calculated in this work largely

deviate from previously published works, that have claimed that there are no cold accre-

tion onto galaxies at z = 2. For example, Nelson et al. (2015) (as well as Kereš et al.

2009) found that at z = 2 cold accretion of external diffuse gas accounts for only 10%

of the total accretion onto central galaxies of 1012 M⊙ halos. Nelson et al. (2015) used

simulations run with the AREPO code (Springel 2010), and defined hot accretion if the

maximum past temperature of the gas particles was larger than the virial temperature

of the host halo at the accretion time (time of the most recent radial crossing). In Paper

I as well as throughout this work, we apply the Tpost−shock + Spost−shock method, based

on the current temperature and entropy of the gas particle, to calculate the hot/cold

modes of gas accretion. As a result, we find that cold accretion onto galaxies in 1012 M⊙

halos accounts for 50% (70%) of the total at z = 0 (z = 2) using the Tmax criteria, but it

accounts for 90% (95%) using the Tpost−shock + Spost−shock criteria.

The different method we employ to calculate the modes of accretion explains the large

differences with respect to previous works. We believe that Tmax is not suitable for

identifying cold flows for the following reasons. First, it occurs that gas goes through a

shock but immediately cools afterwards (due to in-shock cooling, e.g Hutchings & Thomas

2000). In this case if gas is mostly cold except at a point in space and for a short period
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of time, numerical studies would label it as hot accretion but observations would call it

a cold flow. Secondly, it also occurs that SN outflows heat the surrounding gas particles,

that reach large temperature values (∼ 107.5K) while being expelled out the galaxy. After

that, the particles eventually cool and are re-acreted onto the galaxy. However, since they

did not reach a temperature larger than 107.5K when crossing 0.15 × R200, Tmax is not

updated and they are considered as hot mode accretion by the Tmax criterion (for more

details see Chapter 5).

We next analyse how feedback impacts on hot gas accretion onto galaxies. In the

previous subsection we found that the total rate of gas accretion onto galaxies changes

with feedback, by decreasing in scenarios of weak and no stellar feedback, and increasing

when there is no AGN feedback. We investigate how the fraction of hot gas accretion

onto galaxies (fhot,galaxy, ratio of hot gas accretion with respect to the total) changes with

feedback. We compare simulations with strong, standard and weak stellar feedback and

find that stellar feedback does not significantly alter fhot,galaxy. Similarly, we compare

simulations with strong, standard and no AGN feedback and find that while fhot,galaxy

from standard and strong AGN feedback are in very good agreement, fhot,galaxy from the

no AGN feedback simulation increases by ∼0.2 dex at fixed halo mass (in halos larger

than 1012 M⊙). This is very encouraging, since it indicates that Tpost−shock + Spost−shock

method is not as feedback dependent as the Tmax method (Nelson et al. 2015). Also

it proves that the galaxy hot gas accretion is connected with the hot halo cooling flow,

able to develop earlier when there is no AGN feedback. We further analyse the cooling

flow-AGN feedback connection in §6.6.

Finally, we analyze how fhot,galaxy changes in simulations with no feedback and different

hydrodynamic scheme. We compare fhot,galaxy from the NoFeedback/Anarchy simulation

with the NoFeedback/Gadget simulation, and find that in halos larger than 1011.5 M⊙

the fraction of hot gas accretion onto galaxies is larger in Anarchy, by up to 0.4 dex,

with respect to Gadget. This is expected, since Anarchy is able to mix phases in contact

discontinuity, dense cold clumps dissolve while crossing the hot halo (Schaller et al. 2015),

and the amount of gas accreted hot increases.

6.4 Density profile of gaseous halos

In this section we investigate how the gas density profile evolves due to the continued

infall, reheating and cooling of gas in the halo. During hierarchical growth, dark matter

halos in equilibrium are able to acquire a density profile with a near universal shape. The

functional form of the universal shape is generally refereed to as ‘NFW’ profile (Navarro

et al. 1997), which depends on halo mass and concentrationi. In Chapter 4 we presented

iA halo’s concentration is defined as the ratio of the virial radius and the scale radius, which is defined
as the radius where the logarithmic density slope is −2. Thus, given the NFW profile, only a relation



6.4. Density profile of gaseous halos 165

a semi-analytic, physically motivated model for dark matter halo concentration as a

function of halo mass and redshift. The model combines an analytic description of the

halo mass accretion history (MAH) based on extended Press Schechter (EPS) theory

(see Chapter 2), with an empirical relation between concentration and formation time

obtained through fits to the results of numerical simulations (see Chapter 3). Because

the model is based on EPS theory, it can be applied to a wide range of mass, redshift

and cosmology. In gaseous halos however, baryons not only produce more concentrated

density profiles (if radiative cooling is efficient and feedback is weak, Duffy et al. 2010),

but also produce cuspier profiles (Schaller et al. 2015). In fact, neither the NFW nor

other profiles (like Einasto, Einasto 1965) are able to reproduce the density profiles of

gas (as recently shown by Schaller et al. 2015).

Therefore, in this section we analyse the gas density profile, ρgas(r), of halos from the

EAGLE simulations and investigate whether ρgas(r) deviates from the often assumed

isothermal shape. Rather than following our methodology from Chapter 4 and only

considering relaxed halosii, we work with all halos from the L100N1504/REF simulation

and separate them in mass bins of ∆ log10(M200) = 0.2 width. To calculate ρgas(r), we

define a set of concentric spherical shells of width ∆ log10(r) = 0.078 (with the outermost

bin touching the virial radius), we add the mass of the particles within each shell and

divided by the volume. As we are only interested in analysing the density profile of gas

from the inner regions of halos (not within galaxies), we restrict the analysis of ρgas(r)

to the radial range 0.15 to 1 × r200.

Fig. 6.6 shows the median gas density profile at z = 0 (left panel) and z = 2 (right

panel) of stacks of halos in the mass range log10(M200/ M⊙) ± 0.1, with log10(M200/ M⊙)

varying from 11.5 to 13.7, as indicated in the legends. The figure shows that ρgas(r)

largely deviates from the isothermal shape at large halo masses. If we define γ as the

logarithmic density slope (d ln ρgas/d ln r = γ), we obtain that γ increases from −1.86 in

1012 M⊙ halos to −0.95 in 1012.7 M⊙ halos, and then decreases again towards larger halo

masses. In smaller halos, ρgas(r) is steeper inside the galaxy region and γ ∼ −2.

The change in the slope of ρgas(r) shows how the distribution of the hot gas in the

halo evolves, and can be explained as follows. Since a stable hot halo forms in the mass

range 1011 − 1012 M⊙, gas crossing r200 remains hot. As a result the gas density in the

range 0.5 − 1r200 increases and the density profile flattens. In halos larger than 1013 M⊙

the hot gas begins to cool and infall into the galaxy. Thus the amount of hot gas in the

range 0.5 − 1r200 slowly decreases, steepening the density profile.

We assume that the functional form of ρgas(r) is given by the following expression

between concentration and halo mass is needed to fully specify halo structure at fixed mass.
iiRelaxed halos are those where the separation between the centre of the potential and the centre of the

mass is less than 0.07r200 (Macciò et al. 2007; Neto et al. 2007).
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Figure 6.6: Median gas density profile of gas at z = 0 (left panel) and z = 2 (right panel) of stack
of halos in the mass range log10(M200/ M⊙) ± 0.1, with log10(M200/ M⊙) varying
from 11.5 to 13.7, as indicated in the legends.

ρgas(r) = ρnorm

(

r

r200

)γ

10β[log10(r/r200)]2 , (6.18)

where γ and β are free parameters and ρnorm is the normalization. We obtain γ and β

by performing a least-square minimization of the quantity ∆j,k = 1
N

∑N
i Y 2

i , with

Yi = log10[ρgas(ri, M200,j , zk)/ρcrit(zk)]

−F [M200,j , γ(M200,j , zk), β(M200,j , zk)], (6.19)

where F is the functional form given by eq. (6.18) and N is the number of radial bins

for a given halo mass M200,j and output redshift zk. In the case of ρnorm, we calculate

it by imposing that Mgas,halo = fbM200 =
∫ r200

0 4πρgas(r)r2dr, with fb = Ωb,0/Ωm,0 the

baryon fraction.

We find the best-fit expressions for γ and β, as a function of halo mass and redshift,

are

γ(M200, z) = γ1(z) + γ2(z)x + γ3(z)x2, (6.20)

β(M200, z) = β1(z) + β2(z)x + β3(z)x2, (6.21)

x = log10(M200/1012 M⊙), (6.22)
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Figure 6.7: Same as left panel from Fig. 5 from simulations with weak stellar feedback (top
left panel), strong stellar feedback (top right panel), no AGN feedback (bottom left
panel) and strong AGN feedback (bottom right panel).
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6.4.1 Impact of feedback

In this section we investigate the dependence of the gas density profile of halos on feedback

model. We calculate the median gas density profile at z = 0 of stacks of halos in the

mass range log10(M200/ M⊙) ± 0.1, with log10(M200/ M⊙) varying from 11.5 to 12.5 (in

L025N0376 simulations, top panels from Fig. 6.7) and from 11.5 to 13.5 (in L050N0752
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simulations, bottom panels from Fig. 6.7). We use simulations with weak and strong

stellar feedback, as well as strong and no AGN feedback. Fig. 6.7 shows a comparison

between the gas density profiles. The top panels show that when stellar feedback is weak,

the number of gas particles per radial bin decreases, on the contrary, when stellar feedback

is strong, the number of gas particles increases. This is expected since SN outflows expel

gas particles from the galaxy into the halo, thus raising the gas density. Besides the

normalization, we find that in both scenarios (weak and strong stellar feedback), ρgas(r)

deviates from the isothermal shape, and as the halo mass increases, the density profile

flattens.

The bottom panels of Fig. 6.7 show the same as the top panels, but the density profiles

are taken from simulations with no AGN feedback (bottom left panel) and strong AGN

feedback (bottom right panel). In this case we also note a change in the normalization

of ρgas(r), which increases in the no AGN feedback scenario and decreases when AGN

feedback is strong. In addition, we also find that the shape of ρgas(r) changes with halo

mass. In the strong AGN feedback model ρgas(r) evolves as in the standard AGN model

(left panel from Fig. 6.6), in the halo mass range 1011.5 − 1012.5 M⊙ the gas density in the

range (0.5 − 1)R200 increases, indicating that hot gas is being accumulated, the stable

hot halo is forming (for a more detail description of hot halo formation see §5.3), and the

density profile flattens. In the no AGN case, ρgas(r) also changes with halo mass but it

does not show a strong flattening. The slope of ρgas(r) reaches −1.4 in 1012.7 M⊙ halos,

whereas in the standard AGN feedback case γ = −0.95 and in the strong AGN feedback

case γ = −0.82. We believe that ρgas(r) does not flattens because in the absence of AGN

feedback the cooling flows from the hot halo are able to develop. We investigate this

further in §6.6.

6.5 Modelling gas accretion onto galaxies

In this section we derive a physically motivated model for gas accretion onto galaxies,

that is based on the original model of radiative cooling from White & Frenk (1991), and

includes an evolving density profile. We begin with a brief description of the simplest

cooling model from SAMs in §6.5.1 and derive the model of gas accretion in §6.5.2.

6.5.1 Radiative cooling model in SAMs

To date, only a few SAMs have implemented the co-existence of the hot and cold modes

of accretion onto central galaxies. SAMs instead assume that recently accreted gas is

instantaneously redistributed within the halo, and is only able to cool and fall into the

galaxy if it is within the cooling radius. The lack of distinction between hot and cold

modes of accretion is not very important at redshift zero, because there are no cold



6.5. Modelling gas accretion onto galaxies 169

filaments penetrating the hot halo, and most of the gas accreted is hot in halos larger

than 1011.7 M⊙ (more than 50%, see Chapter 5). SAMs assume that cooling is an inside-

out process, and that for a given halo mass the gas is distributed following an isothermal

density profile,

ρgas(r) =
mgas

4πr200r2
, (6.25)

where mgas = 0.9(Ωb,0/Ωm,0)M200 is the hot gas mass contained within the halo (it is

usually assumed that 10% of the gas mass is locked in stars). If the cooling radius,

obtained by equalling the cooling time with dynamical time, is smaller than the virial

radius, the cooling is said to be ‘slow’ or under a ‘static hot halo regime’. In the case

the cooling radius is larger than the virial radius, the cooling is said to be ‘rapid’ and

the cooling rate is equal to the halo accretion rate. The dynamical and cooling times are

calculated as in §5.3 following eqs. (5.2) and (5.3).

6.5.2 Semi-analytic model of gas accretion onto galaxies

In §6.3.3 we showed that the total gas accretion onto galaxies is the result of two different

modes of accretion, hot and cold. We consider these two different modes in our model

of gas accretion and calculate Ṁgas,galaxy in terms of the rate of gas cooling from the

hot halo, Ṁcool, and the rate of cold gas accretion onto halos in the form of filaments,

fcoldṀgas,halo, as

Ṁgas,galaxy ∝ Ṁcool + fcoldṀgas,halo. (6.26)

Here Ṁgas,halo is the gas accretion rate onto halos in the presence of feedback, given by

eqs. (6.5-6.12).

We define Mcool as the gas mass from the hot halo contained within rcool. We calculate

Mcool as Mcool =
∫ rcool

0 4πρhot gas(r)r2dr = 4πr3
200ρnorm

(

rcool

r200

)

, where we assumed (for

simplicity) that the density profile of hot gas is ρhot gas = ρnormr−2. We determine ρnorm

by requiring that
∫ r200

0 4πρhot gas(r)r2dr is equal to the total hot gas mass in the halo,

Mhot. Then Mcool results

Mcool = Mhot
rcool

r200
. (6.27)

Next, by assuming that rcool/r200 remains roughly constant during a short time step, we

obtain
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Ṁcool ≈ Ṁhot
rcool

r200
, (6.28)

Ṁcool ≈ fhotṀgas,halo
rcool

r200
, (6.29)

where in eq. (6.29) we assumed that the variation of hot gas in the halo, Ṁhot, is driven

by the hot mode of accretion, Ṁhot = fhotṀgas,halo. As a result, eq. (6.29) gives the

cooling radius a new physical meaning. Rather than being the radius below which all gas

is able to cool, it is now the fraction of shock-heated gas that cools ( rcool

r200
= Ṁcool

fhotṀgas,halo
).

In other words, it is the rate of the hot halo cooling flow. By substituting eq. (6.29) into

eq (6.26) the accretion rate onto galaxies results

Ṁgas,galaxy = εeff(fhotrcool/r200 + fcold)Ṁgas,halo, (6.30)

where we include the free parameter εeff , defined as the efficiency for the rate of gas

cooling. We use εeff to control the normalization of Ṁgas,galaxy and fit the simulation

result to the model.

To determine Ṁgas,galaxy, we need to calculate rcool as a function of halo mass. We

do it by following two different methods. We first apply the classical model described in

§6.5.1. Secondly, we apply a ‘modified’ model based on equaling the following heating

and cooling rates

Γheat = kBTvirfhot(Ωb,0/Ωm,0)
Ṁgas,halo

Mhot
, (6.31)

Γcool = Λ(T, Z)/ngas(r). (6.32)

(see Chapter 5 for details). In both cases, we calculate rcool by assuming an isothermal

density profile from eq. (6.25) and the density profile with an evolving slope calculated

in §6.4.

The top panel of Fig. 6.8 shows a comparison between the model of galaxy gas accretion

given by eq. (6.30), calculated using the ‘modified’ model for the cooling radius with an

isothermal density profile (dot-dashed blue line) and the modified model with the density

profile derived in §6.4 (yellow solid line). In addition, we include in the panel the gas

accretion rate onto galaxies taken from the L100N1504/REF simulation (red diamond

symbols) and the best-fit of the galaxy gas accretion from low-mass halos (grey dashed

line). It can be seen that while the blue dot-dashed curve does not seem to correctly

capture the rate of galaxy gas accretion from the simulations, the yellow solid curve is in
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Figure 6.8: Top panel: gas accretion rates onto galaxies as a function of halo mass in the redshift
range 0 ≤ z < 0.1. The red symbols correspond to the galaxy gas accretion rate
taken from the L100N1504/REF simulation and the error bars correspond to the
1σ scatter. The yellow solid line corresponds to the gas accretion model, which we
calculated using the heating and cooling rates from Chapter 5 and the density profile
from §6.4. Similarly, the blue dot-dashed line corresponds to the same model but
an isothermal density profile. For comparison, the dashed grey line corresponds the
galaxy gas accretion rate from low-mass halos extrapolated to higher halo masses.
Bottom panel: analytic estimations of the cooling radius as a function of halo mass
at z = 0 from the same models shown in the top panel (yellow solid and dot-dashed
blue lines), and from the classical model using an isothermal density profile (red
dashed line) as well as the density profile estimated in §6.4 (purple dashed line).



172 On the hot halo cooling flow

excellent agreement. We find that because the cooling radius is smaller than the virial

radius when M200 > 1011.6 M⊙, the accretion rate decreases towards higher halo masses

with respect to the grey dashed line. However, the cooling radius does not continuously

decrease towards high halo masses as generally thought, when we apply an evolving

density profile with halo mass, the cooling radius describes an upturn. It decreases with

increasing halo mass until 1012.7 M⊙ halos and then increases.

The evolution of the cooling radius is explored in more detail in the bottom panel of

Fig. 6.8. This panel shows the cooling radius as a function of halo mass for the different

models considered. The dot-dashed blue line corresponds to the modified model with an

isothermal density profile whereas the yellow solid line corresponds to the same method,

but with an evolving density profile. The red and purple dashed lines are calculated using

the classical method with an isothermal and evolving density profile, respectively.

We find that the density profile with changing slope is able to produce (in both models,

modified and classical) a cooling radius that initially decreases for masses up to 1013 M⊙,

and then increases. However, we find that using rcool from the modified model in the

calculation of the galaxy gas accretion gives a much better agreement to the simulation

data than rcool from the classical model.

The upturn in the rcool−M200 relation can be explained by analyzing the evolving radial

slope of the gas density profile. When we calculate rcool by equalising the relations (6.31)

and (6.32), we obtain that Λ/Γheat = ngas(rcool). If we assume that Λ/Γheat is roughly

constant and independent of the density profile used, we then find that (rcool,−2/r200)−2 =

(rcool,γ/r200)γ . Since γ increases with respect to −2 in the halo mass range 1012−1013 M⊙,

reaches a maximum value and then decreases, rcool,γ/r200 follows the same but inverse

behavior, and as a result the relation with rcool,−2/r200 is maintained.

In addition, since the ratio rcool/r200 gives the fraction of shock-heated gas that cools,

the upturn can also be understood in terms of the hot halo cooling flow. When the halo

develops a stable hot atmosphere, the infalling gas heated by accretion-shocks remains

hot and close to r200. The gas is able to cool after a cooling time which is approximately

10Gyr (Chapter 5). As a result, halos that develop a hot atmosphere within the past

10Gyr will not have a continuous flow of gas cooling from the hot halo and rcool will

decrease and be smaller than r200. Only larger halos (> 1013 M⊙) are able to have a hot

halo cooling flow. For that reason, rcool increases in halos larger than 1013 M⊙.

When we analyse the evolution of rcool with halo mass and redshift, we find that rcool

describes an upturn only at z ≤ 2, at higher redshifts rcool decreases with increasing

halo mass. We next investigate whether the analytic estimations of rcool for different

redshifts produce galaxy gas accretion rates in agreement with the simulation data. The

panels from Fig. 6.9 show a comparison between the semi-analytic model for Ṁgas,galaxy

(solid lines) and the gas accretion rates onto galaxies taken from the L100N1504/REF
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Figure 6.9: Gas accretion rates onto galaxies as a function of halo mass in various redshift
ranges as indicated in the legends. Each panel shows the gas accretion rates onto
galaxies taken from the L100N1504/REF simulation (diamond symbols, with the
error bars the 1σ scatter) and predicted by the theoretical model (solid lines). For
comparison, the panels show the gas accretion onto halos (grey long-dashed lines)
and the best-fitting relations from eqs. (6.5-6.12) (colored short-dashed lines).
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simulation (diamond symbols). In addition, the panels show the median gas accretion

rates onto halos from the L100N1504/REF simulation (grey long-dashed line) and the

best-fitting relations given by eqs. (6.5-6.12) (short dashed color lines). To achieve good

agreement between the model with the simulation data we calculated the best-fitting

value of the free parameter εeff in eq. (6.30) and found εeff = 0.35. Overall Fig. 6.9 shows

an excellent agreement with the simulated data at all redshifts.

6.5.3 Accretion rate onto the ISM

In the previous subsection we derive a semi-analytic model for gas accretion onto galaxies

that reproduces the median accretion rates obtained from the simulations. The next step

is however, to analyse whether we are able to relate the accretion rates onto galaxies

with the accretion rates onto the ISM. In §6.2.1 we have found that since the growth rate

of the galaxy and ISM is roughly the same, the accretion rates are related by the ratio

between the total masses. However, given that all the gas from the ISM and galaxy is

contained within 0.15 × r200, the ratio between the masses is equal to the ratio between

the mean enclosed densities.

To calculate the mean ISM density we consider that the typical hydrogen number

density for the ISM is nH = 0.1 cm−3, which corresponds to a density ρISM = µmpnH =

10−25 gr cm−3 = 104ρcrit (with ρcrit = 1.879 10−29h2 gr cm−3 the critical density today).

We then assume 〈ρISM〉0.15r200 = 104ρcrit. To calculate the mean enclosed gas density

within 0.15 × r200, we perform the integral M(< 0.15 × r200) =
∫ 0.15r200

0 4πr2ρgas(r)dr

and obtain 〈ρgas〉0.15r200 = M(< 0.15 × r200)/[4π/(0.15r200)3/3].

We calculate ṀISM by assuming that all cold gas accreted onto the galaxy falls into

the ISM, but that only a fraction κ̃ of hot gas is able to cool and fall into the ISM. Here,

κ̃ = τdelayκ, where κ = 1
1.3

〈ρISM〉0.15r200

〈ρgas〉0.15r200
and τdelay = 1.25 × 10−3 is a delay factor that

represents the efficiency of hot gas cooling and falling into the ISM. τdelay is calculated

by performing a least-square minimization between the curves of Fig. 6.10 and looking

for the best-fit normalization. We then find that the accretion rate onto the ISM can be

calculated using the following relation

ṀISM = εeff [fhot(rcool/r200)κ̃ + fcold]Ṁgas,halo. (6.33)

Fig. 6.10 shows the gas accretion rates onto galaxies and ISM. The semi-analytic model

is plotted in yellow lines while the simulation output in purple symbols and lines, as

indicated in the legend. We find that ṀISM obtained from eq. (6.33) is in very good

agreement with the simulation output for halos larger than 1011.5 M⊙. In smaller halos,

the model overpredicts the rates by up to 0.5 dex.
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Figure 6.10: Gas accretion rate onto central galaxies and ISM in the redshift range 0 to 0.1. The
purple dashed line and diamond symbols show the respective accretion rate onto
galaxies and ISM calculated from the L100N1504/REF simulation. The yellow
long-dashed curve shows the accretion rate onto galaxies obtained by the model
described in §6.5.2 and the yellow solid curve shows an analytic estimation of the
accretion rate onto the ISM obtained by multiplying the semi-analytic model of
gas accretion with the ratio between densities (eq. 6.33).

6.6 AGN feedback and hot halo cooling

The model of gas accretion onto galaxies derived in §6.5 accurately describes the accre-

tion rates from the simulations. However, there are various mechanisms that can alter

Ṁgas,galaxy. At high halo masses (> 1012 M⊙), the most important is AGN feedback. The

central supermassive black holes observed in many massive galaxies expel large amounts

of gas in the form of jets (radio mode feedback). In Chapter 5 we investigated how the

hot gas mass in the halo, Mhot, changes with feedback, and found that the presence of

AGN feedback decreases Mhot at fixed halo mass with respect to the same halos with no

AGN by up to a factor of 2.

In the previous chapter we also showed that a halo with no central AGN is able to

form a stable hot atmosphere when it reaches a mass of 1011.5 M⊙, whereas the same halo

with AGN feedback forms the hot atmosphere when it reaches 1011.7 M⊙. Thus there is a

connection between hot halo formation and AGN feedback. In this section we investigate

the difference between gas accretion onto galaxies with and without AGN feedback, and

show that the model presented in this work is able to reproduce both scenarios.

The left panel of Fig. 6.11 shows the gas accretion rate onto galaxies with no AGN

feedback (blue solid line), with standard AGN feedback (blue dashed line), and with

strong AGN feedback (blue dot-dashed line) in the redshift range 0 ≤ z < 0.1 (left panel)

and 2 ≤ z < 2.24 (right panel). The 1σ scatter of Ṁgas,galaxy without AGN feedback and

strong AGN feedback are shown in the grey and cyan shade regions, respectively.



176 On the hot halo cooling flow

Figure 6.11: Gas accretion rate onto galaxies with no AGN feedback (blue solid line), with
standard AGN feedback (blue dashed line) and with strong AGN feedback (blue
dot-dashed line) in the redshift range 0 ≤ z < 0.1 (left panel) and 2 ≤ z < 2.24
(right panel). The panels show the 1σ scatter of the median values of Ṁgas,galaxy

per mass bin in grey shade area (for Ṁgas,galaxy without AGN feedback) and in
cyan shade area (for Ṁgas,galaxy with strong AGN feedback).

There is a significant change in the dependence of Ṁgas,galaxy on halo mass when there

is no AGN feedback. We find Ṁgas,galaxy monotonically increases with halo mass, whereas

in the scenario with strong AGN feedback Ṁgas,galaxy follows the same shape as in the

case of standard AGN feedback (but with a 0.2 dex lower normalization). The difference

of Ṁgas,galaxy in the case of no AGN feedback seems to indicate that there is no hot

halo impact on galaxy gas accretion, however this does not always seem to be the case.

The right panel of Fig. 6.11 shows the same as the left panel, but in the redshift range

2 ≤ z < 2.24. As can be seen there is good agreement (less than 0.1 dex difference)

between Ṁgas,galaxy from the different AGN prescriptions. This prompts us to ask what

causes the disagreement at z = 0?

To understand how Ṁgas,galaxy changes with and without AGN feedback we refer to

our model of gas accretion. As outlined in this chapter, the model includes hot and cold

contributions to the total gas accretion rate onto halos. It also includes the hot gas mass

in the halo, Mhot, as well as the evolution of the density profile, ρgas(r), with halo mass.

We investigate how each at these inputs change in the No AGN simulation case with

respect to the REF model:

• Ṁgas,halo: we compare the gas accretion rates onto halos from the REF and No

AGN simulation and find no significant difference in Ṁgas,halo (in agreement with

van de Voort et al. 2011). We then use the eqs. (6.5-6.12) to calculate Ṁgas,halo.

• fhot: we find that fhot,NoAGN is slightly larger than fhot,REF in the halo mass range

1012 − 1013 M⊙, i.e. by a maximum factor of 1.03 in 1012.4 M⊙ halos. We then

assume that fhot is feedback invariant and use the best-fitting expressions given by

the eqs. (6.13-6.17).
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• Mhot: In Chapter 5 we find that Mhot,NoAGN is larger than Mhot,REF in the halo mass

range 1011.7 −1014 M⊙, i. e. by a factor of 1.41 in 1012 M⊙ halos. We then calculate

the best-fit expression for the Mhot−M200 relation and find log10(Mhot/
Ωb,0

Ωm,0
M200) =

−0.659 + 0.729x, with x = log10(M200/1012 M⊙).

• ρgas(r): we analyse how the distribution of gas in the halo changes in the absence

of AGN. We find that as the hot halo is forming, the amount of hot gas at large

radii increases. As a result, ρgas(r) flattens, but not as much as in the presence

of AGN, for which (ρgas,NoAGN(r) reaches a maximum slope of −1.14 in 1012.8 M⊙

halos (which should be compared to the maximum −0.9 reached by ρgas,REF(r))).

This means that the hot gas in halos with no AGN begins to cool before hot gas in

halos with AGN. The best-fit parameters at z = 0 for the density profile given by

eq. (6.18) are γ = −1.727 − 1.379x − 0.135x2 and β = −0.381 − 1.464x + 0.085x2,

with x = log10(M200/1012 M⊙).

In Fig. 6.12 we show the results of our model of gas accretion after including these dif-

ferences. The top panel shows the gas accretion rate onto galaxies predicted by our model

with no AGN feedback (yellow solid line) and with AGN feedback (yellow dashed line).

The blue symbols correspond to the gas accretion rates from the L050N0752/NoAGN

simulation, whereas the blue dashed line corresponds to the L100N1504/REF simulation.

The middle panel of Fig. 6.12 shows the cooling radius as a function of halo mass from

the model with no AGN feedback (blue solid line) and with AGN (yellow dashed line).

There is an important difference in the evolution of rcool with halo mass. In the case

of no AGN, rcool decreases with halo mass in the mass range 1011.5 − 1012.1 M⊙, but it

does not reach the same minimum value as in the case with AGN (minimum value of

rcool,NoAGN is 0.56 compared with 0.13 from rcool,AGN). This means that the rate of gas

cooling from the hot halo is always larger in the absence of AGN activity.

Going back to the top panel of Fig. 6.12, we find that the model of gas accretion

faithfully reproduces the accretion rates from the No AGN simulation. Mathematically,

Ṁgas,galaxy monotonically increases because the rate of gas cooling from the hot halo

Ṁcool = (rcool/r200)fhot ∼ 1 remains roughly constant with increasing halo mass (fhot

increases with halo mass at the same rate rcool decreases). Physically, this means that

the effect on gas accretion can no longer be seen since 1012 M⊙ and even larger halos have

already undergone cooling from a hot halo in the absence of AGN.

This can be understood better by analyzing the bottom panel of Fig. 6.12, which

shows the growth in halo mass of 1012 (yellow solid line), 1012.5 (blue dot-dashed line)

and 1013 M⊙ (red dashed line) halos against redshift (bottom x-axis) and the age of

the universe (top x-axis). Here, we used the extended model of halo mass growth from

Chapter 4 and assumed the same cosmological parameters as the EAGLE simulations.

In the figure we also show the threshold values in halo mass above which halos are
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Figure 6.12: Top panel: Gas accretion rate onto galaxies predicted by our model with No AGN
(yellow solid line), with AGN (yellow long-dashed line) and from the simulations
L050N0752/NoAGN (blue diamond symbols) and L100N1504/REF (blue short-
dashed line) in the redshift range 0.0 ≤ z < 0.1. Middle panel: cooling radius
obtained by equaling heating and cooling rates using the no AGN best-fits for ρgas,
Mhot and fhot (blue solid line) and the standard AGN best-fits (yellow dashed line).
Bottom panel: mass growth of 1012, 1012.5 and 1013 M⊙ halos as predicted by the
model of Chapter 4. They grey short- and long-dashed lines correspond to the
threshold values of hot halo formation in the case of AGN feedback and no AGN
feedback, respectively.
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expected to develop a hot stable atmosphere. The threshold is 1011.7 M⊙ for halos with

AGN feedback and 1011.5 M⊙ for halos without AGN feedback (Chapter 5). Finally,

we highlight in the figure the time that has passed since a 1012 M⊙ halo formed a hot

atmosphere. The main difference between the two scenarios is the time intervals of 8.6Gyr

(for halos with AGN feedback) and 10.3Gyr (for halos without AGN feedback). Given

that a typical cooling time of hot gas in the halo is tcool = 10Gyriii, the bottom panel

of Fig. 6.12 shows that only halos with No AGN activity would have had the time to

develop a hot halo cooling.

6.7 Conclusion

In this work we have investigated the evolution of the gas accretion rates onto the galaxy

and ISM with halo mass and redshift. We have found that, although the specific accretion

rates onto the galaxy and ISM are roughly the same, the accretion rate onto the ISM

increases with halo mass but remains constant in halos larger than 1012 M⊙. Whereas

the gas accretion rate onto galaxies increases with halo mass and only flattens in the halo

mass range 1011.7 − 1012.7 M⊙. In order to understand this behavior, we have developed

a semi-analytic model of galaxy gas accretion. The model considers that two modes of

accretion, cold and hot, contribute to the total gas accretion rate. Cold gas accretion

onto galaxies is driven by the rate of cold accretion onto halos, whereas hot gas accretion

is driven by the rate of gas cooling from the hot halo, that depends on the fraction of

shock-heated gas accreting onto the halo and on the cooling radius.

To calculate the cooling radius, we have equalled the heating rate produced by accretion

shocks (derived in Chapter 5) with the cooling rate. However, in the calculation of the

cooling rate we have used a new functional form for the density profile. We have found

that the density profile, ρgas(r), of halos from the EAGLE simulations deviates from the

isothermal shape. The logarithmic density slope increases with halo mass, it reaches a

maximum of -0.91 in 1013 M⊙ halos and then decreases. The change in the slope of the

density profile shows how the distribution of the hot gas changes as the halo evolves

due to continued infall, reheating and cooling. Because the logarithmic density slope

evolves with halo mass, when we calculated the cooling radius we obtained that it does

not decrease with halo mass, instead it describes an upturn. It is smaller than r200 and

decreases in the halo mass range 1011.6 − 1013 M⊙ and increases towards larger halos.

This evolution of the cooling radius is not only able to produce a rate of gas accretion

onto galaxies in excellent agreement with the simulation data, but also reveals interesting

physics. When the halo develops the hot atmosphere, the infalling gas which is heated

by accretion shocks remains hot and forms part of the hot halo. The gas is only able to

iiitcool can be calculated from eq. (5.3) assuming a virial temperature of 106K, a net cooling rate of
Λ = 10−22erg cm3 s−1 and gas density of ρgas = 10−30gr cm−3.
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cool after a cooling time (which we found in Chapter 5 to be approximately 10Gyr), and

as a result, the gaseous halos that developed the hot atmosphere less than 10Gyr ago

do not have a continuous flow of gas from the hot halo that is now cooling. Only larger

halos (> 1013 M⊙), are able to have a large rate of hot gas cooling. For that reason, rcool

begins to increase halos larger than 1013 M⊙.

The formation of the hot halo not only explains the flattening in the accretion rates

onto galaxies, but also the gas accretion rates onto galaxies that do not have AGN activity,

due to the fact that the rate of gas cooling from the hot halo is larger in the absence

of AGN activity. We have compared our semi-analytic model of gas accretion with the

galaxy accretion rates calculated from the simulation in various redshift ranges and have

found excellent agreement.

Finally, we have related the galaxy gas accretion with the rate of gas accretion onto

the ISM using our density profile model, and have found very good agreement with the

accretion rates onto the ISM from high-mass halos obtained from the simulation output.

This last step is very important because in high-mass halos the star formation rate is

directly proportional to ṀISM, and since ṀISM is related to Ṁgas,halo, we are then able

to predict how the star formation of the central galaxy in the halo is dependent on the

amount of gas that enters the halo.



7
Conclusion

This chapter summarizes the main findings of this thesis and presents ideas for future work.

Our understanding of structure formation in the universe, outlined in the standard model

of cosmology, has greatly improved over the last few decades. Throughout this thesis we

have contributed to this understanding by studying three main topics: the physics that

drives the accretion history of dark matter halos, its relation with the halos internal

structure, and the impact of halos accretion history on galaxy evolution. We summarize

the analysis and conclusions of this thesis in §7.1, and discuss the implications of this

study for the future of the field in §7.2.

7.1 Summary of findings

The first questions addressed in this thesis are: what drives the halo mass accretion

history? and what is the physical origin of the function that describes its shape? In order

to answer these questions, in Chapter 2 we derived an analytic model for the halo MAH

using the EPS formalism. We concluded that the halo MAH is determined by the initial

power spectrum of density fluctuations and the growth factor. We showed that the halo

MAH can be well described by an exponential function (M(z) ∼ eβz) in the high-redshift
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regime but not in the low-redshift regime. At low redshift, in the dark energy dominated

era, the growth of density perturbations is halted due to the accelerated expansion of

the Universe, as a result the halo mass growth slows down and the halo MAH can be

described by a power law function (M(z) ∼ (1 + z)α). However, the parameters in the

function depend on the power spectrum, that determines when the structures are formed.

We showed that the larger the power spectrum index, the more(less) power there is at

small(large) scales, and as a result low-(high-)mass halos are formed earlier(later).

Throughout the last decade, several works attempted to quantify halo MAHs using

numerical simulations and analytic calculations (e.g van den Bosch 2002a; Wechsler et al.

2002; McBride et al. 2009; Fakhouri et al. 2010; Behroozi et al. 2013), but despite these

efforts a clear physical explanation of the universality of the halo accretion history was

still missing. In Chapter 2 we explored the origin of the ‘shape’ of the halo MAH and

derived an analytic model that is in very good agreement with simulation-based works.

The following question we explored is what is the connection between the halo density

profile, the halo accretion history and the power spectrum. In Chapter 3 we used a

series of cosmological high-resolution simulations from the OWLS project to address this

question. We examined the density profiles and mass histories of all resolved halos and

their progenitors. We separated them into a ‘relaxed’ sample, and a ‘complete’ sample

(that included both relaxed and unrelaxed halos). We calculated the mass, M−2, enclosed

within the NFW scale radius r−2 of each halo, and the redshift, z−2, when the mass of the

main progenitor equals M−2. We confirmed the finding of Ludlow et al. (2013), that for

relaxed halos the mean enclosed density within r−2, 〈ρ〉(< r−2), is directly proportional

to the critical density of the Universe at the formation redshift, z−2. Concluding that

〈ρ〉(< r−2), and so a halo’s concentration, depends on the evolutionary stage of the

halo when it is formed. Since low-mass halos assemble earlier, when the Universe was

denser, than high-mass halos, low-mass halos have higher inner densities and are then

more concentrated. Using the relation 〈ρ〉(< r−2) = 900ρcrit(z−2), we derived a halo

concentration-formation time relation.

We first analysed concentrations and found that, on average, halo concentrations differ

by a factor of 1.16 between the relaxed and complete samples. The lower individual

concentrations of unrelaxed halos (due to spurious subhalos or ongoing mergers that do

not result in an accurate fit for an NFW density profile) produce incorrect enclosed halo

masses and therefore lower formation times (by a factor of 1.1). However, on average,

the formation time-concentration relation does not change, indicating that the halo mass

history is not affected by the fact that a halo is out of equilibrium at a particular redshift.

We then analysed formation times and found that z−2 decreases with increasing mass (at

a non-linear rate), meaning that high-mass halos are still accreting mass rapidly in the

present epoch, while low-mass halos accreted their mass early.
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The formation time−concentration relation provides the physical link between the halo

mass history and internal structure. This result led us to provide a semi-analytic model

for the halo mass history, that adopts the same functional form as the analytic model from

Chapter 2, but the parameters in the model depend on the halo concentration through the

relation 〈ρ〉(< r−2) = 900ρcrit(z−2), that was obtained from fits to simulation results.

Finally, we compared the semi-analytic MAH model presented in Chapter 3 with the

analytic MAH model from Chapter 2. We found very good agreement in the mass range

109 − 1014M ⊙ between the models. However, we found that the analytic model predicts

larger masses at high redshift for halos with final masses > 1014M ⊙, whereas the semi-

analytic model overpredicts the mass history of low-mass halos (halos with final masses

< 109M ⊙). This last is expected because the semi-analytic model depends on the adopted

concentration-mass relation, which deviates from the assumed power law at low masses.

By combining the analytic and semi-analytic halo MAH models we showed that the

power spectrum can be directly related to the halo internal structure. Power spectrum

determines the halo accretion history, and the halo MAH determines the halo mass

profile through the formation time-concentration relation. We then showed that the

correlation between concentration and rms fluctuation of the primordial density field

found by previous works (e.g. Prada et al. 2012; Diemer & Kravtsov 2015) is driven by

the halo accretion history.

Moving to Chapter 4, the question that motivated the study presented is: what is the

physical relation between the dark matter halo concentration and the mass accretion his-

tory? This question was partially addressed in the previous chapter through the analysis

of the formation time-concentration relation at z = 0. In Chapter 4 we extended the anal-

ysis to high redshift. We began by extending the analytic framework presented in Chapter

2, and derived a model to the describe the halo MAH at any starting redshift zi. Next, us-

ing OWLS simulations, we analysed whether the relation 〈ρ〉(< r−2, zi) = 900ρcrit(z−2, zi)

changes at high-redshift. We found that the average relation is maintained through time.

Then, building on the work by Ludlow et al. (2014), we derived a semi-analytic model for

halo concentration as a function of halo mass and redshift. The model uses the extended

analytic MAH model and the concentration-formation time relation.

The resulting c − M relations were tested using N -body simulations, and compared to

the most recent empirical c − M relations from the literature (van den Bosch et al. 2014;

Dutton & Macciò 2014; Diemer & Kravtsov 2015). The ‘upturn’ at high masses seen by

some studies (Klypin et al. 2011; Prada et al. 2012; Dutton & Macciò 2014; Diemer &

Kravtsov 2015) is not reproduced by our physically derived model which, however, only

applies to relaxed halos.

We next analysed the physical relation between halo concentration and accretion his-

tory, and concluded that the halo MAH strongly impacts on halo concentration. Halos
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have small or large concentrations depending on how fast or slow was their mass growth

rate. At high-redshift, halos generally have low concentrations. This is because at early

times halos growth rate is characterized by an exponential growth, as a result their core

radius, r−2, increase with the virial radius, and concentrations remain roughly constant.

At low redshift the situation is different, low-mass halos have large concentrations in

comparison to high-mass halos. We found that at low redshift, during the dark energy

dominated epoch, there is a drop in the accretion and merger rates of small halos, and

the halo mass increases due to the evolution of the reference density used in the spherical

overdensity definition of the halo (ρcrit(z) in this case). This is known as pseudo-evolution

of the halo mass, that is thus driven by the halo mass definition rather than the accre-

tion of new material. The pseudo-evolution of the halo mass gives the impression that

concentrations are increasing because of contraction of the bound cores, when in fact the

core radius remain constant. We then showed that when assuming r−2 constant in the

redshift range z = 0−1, the increase in r200 due to the drop in ρcrit gives the approximate

increase in the concentration values.

Interestingly, the different growth rates of the concentrations produced by the change

in the halo MAHs, creates a ‘break’ in the c − M relation. The break is produced by the

halo MAH, that goes from being dominated by a power-law (for low-mass halos, thus

high concentrations) to an exponential (for high-mass halos, thus low concentrations).

The latter part of this thesis focussed on the impact of halo accretion history on galaxy

evolution. Chapter 5 studied the formation of the hot hydrostatic halo, its dependence on

feedback mechanisms as well as on the modes of gas accretion. The question we addressed

is: what physical mechanisms drive the formation of the hot hydrostatic halo? To do

so we made use of the EAGLE suite of hydrodynamical simulations as well as analytic

calculations.

We analysed the probability density function (PDF) of cooling time of gas in the halo

and found that when the hot halo is formed, it produces a bimodality in the PDF. The

bimodal shape indicates that the hot halo reduces the cooling flows, and thus increases

the hot gas mass, Mhot, at large radii. By inspection of cooling time PDFs we found

that the mass scale for hot halo formation is 1011.7 M⊙ at z = 0, as originally proposed

by Dekel & Birnboim (2006). However, stellar and AGN feedback modify the mass scale

for hot halo formation.

In the case of stellar feedback, outflows from SN events expel gas out of the galaxy into

the halo and generate recycling winds. This changes the distribution of the hot gas in the

halo because the gas expelled from the galaxy produces shocks, heats the surrounding

gas and increases Mhot. We found that in strong stellar feedback scenarios the hot gas

mass in the halo is larger than in the REF model that contains moderate stellar and

AGN feedback (i.e. by a factor of 1.67 in 1012 M⊙ halos, with Mhot,REF = 1010.44 M⊙),
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and as a result the hot atmosphere is potentially forming in 1011.45 M⊙ halos. In weak

stellar feedback scenarios the situation is different. The amount of hot gas decreases

with respect to the REF model (i.e. by a factor of 2.29 in 1012 M⊙ halos), and the hot

atmosphere is able to form when the halo reaches a mass of ∼ 1012 M⊙.

In the case of AGN feedback, we found that the cooling time PDF is almost unchanged

between scenarios with strong AGN and no AGN feedback. However, the PDFs do change

at higher halo masses (> 1012 M⊙). We showed that in the no AGN feedback scenario,

the hot gas mass in the halo slightly increases, and the hot atmosphere is able to form

in 1011.6 M⊙ halos. On the contrary, in strong AGN activity scenarios, Mhot decreases

by up to a factor of 1.5 with respect to the REF model, and the hot halo is formed in

1011.8 M⊙ halos.

We then analysed the hot and cold mode of accretion onto halos and calculated the

fraction of hot mode gas accretion, fhot. In this work we used the gas temperature and

entropy, Tpost−shock and Spost−shock respectively, after accretion as parameters to select

shock-heated gas, rather than the commonly used maximum temperature, Tmax, ever

reached by the gas particles. We found that Tpost−shock + Spost−shock is a better method

to select hot gas accretion, because it does not include gas particles that go through a

shock but immediately cool afterwards (due to in-shock cooling or heating rate smoothing,

or are not even shock-heated but counted as hot accretion, as occurs when Tmax is affected

by stellar feedback), and therefore do not contribute to the hot halo formation process.

The resulting fraction of hot accretion found increases in time at fixed halo mass.

Finally, we derived a semi-analytic model of hot halo formation that depends on hot

gas mass in the halo, as well as accretion rates and the fraction of hot gas accretion.

We assumed energy conservation in the presence of radiative losses and ideal gas, and

found that the change in the internal energy of the gas depends on the cooling rate and

the heating rate. When the external shock heating overcomes radiative cooling, the gas

pressure and temperature increase, forming the hot halo.

Following the seminal work of Dekel & Birnboim (2006), we defined a critical mass,

Mcrit, above which the halo develops a hot atmosphere because the gas has larger heating

than cooling rate. We obtained Mcrit = 1011.7 M⊙ at z = 0. At higher redshift Mcrit

increases and reaches 1012.66 M⊙ at z = 8. We compared the values of Mcrit with those of

Dekel & Birnboim (2006) and found very good excellent agreement in the redshift range

z = 0 − 3. At z = 0 this is expected because we showed that our stability condition

expression is equivalent to that of Dekel & Birnboim (2006). At z > 0 we have a different

redshift dependence introduced through the accretion rate, fraction of hot accretion and

hot gas mass. We then concluded that not only AGN and SN feedback affect the mass

scale of hot halo formation, but also the accretion history and the presence of filaments.

Larger accretion rates, but unchanged fraction of hot accretion, would decrease Mcrit
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and halos would form their hot atmospheres earlier. While a larger fraction of cold gas

accretion, but unchanged accretion rates, would increase Mcrit and halos would form their

hot atmosphere later.

The final question we addressed in this thesis is: what drives the gas accretion rate onto

galaxies at the center of dark matter halos? This is a very challenging question to answer

because of the complex physical mechanisms, such as gas dynamics, star formation, stellar

and AGN feedback and heating from the hot halo, that govern the evolution of galaxies.

However, we made an attempt to answer this question and using the EAGLE simulations

we investigated the evolution of the rates of gas accretion onto the central galaxies and

ISM. We found that, although the specific accretion rates onto the galaxy and ISM are

roughly the same, the accretion rate onto the ISM increases with halo mass but remains

constant in halos larger than 1012 M⊙. Whereas the gas accretion rate onto galaxies

increases with halo mass and only flattens in the halo mass range 1011.7 − 1012.7 M⊙.

In order to better understand the dependence of the galaxy gas accretion rate with halo

mass and redshift, we developed a simple semi-analytic model of galaxy gas accretion. In

the model, we first assumed that two modes of gas accretion, hot and cold, add to the

total gas accretion rate. We assumed that cold accretion is driven by the rate of cold

accretion onto halos, whereas hot gas accretion is driven by the rate of gas cooling from

the hot halo, which in the model depends on the fraction of shock-heated gas accreting

onto the halo and on the cooling radius, rcool.

To calculate the cooling radius, we equaled the heating rate produced by accretion

shocks with the cooling rate. However, in the calculation of the cooling rate we used a

new functional form for the density profile. We analysed the gas density profile of halos

in the simulations and found that high-mass halos largely deviate from the commonly

assumed isothermal density profile. The logarithmic density slope changes with halo mass,

it increases with halo mass and reaches a maximum in 1013 M⊙ halos and then decreases.

The change in the slope of the density profile shows how the distribution of the hot gas

evolves due to continued infall, reheating and cooling. Because the logarithmic density

slope changes with halo mass, when we calculated the cooling radius, we obtained that it

does not decrease with increasing halo mass, instead it describes an upturn. It decreases

in the halo mass range 1011.6 − 1013 M⊙ and increases towards larger halos.

The evolution of the cooling radius is included in the rate of gas cooling from the hot

halo and as a result, it not only predicts rates of gas accretion onto galaxies that are in

excellent agreement with the simulation data, but also reveals interesting physics. When

the halo develops the hot atmosphere, the infalling gas which is heated by accretion

shocks remains hot and forms part of the hot halo. The gas is only able to cool after

a cooling time (which is approximately 10Gyr), and as a result, the gaseous halos that

developed the hot atmosphere less than 10Gyr ago do not have a continuously flow of gas
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from the hot halo that is now cooling. Only larger halos (> 1013 M⊙), are able to have

a large rate of hot gas cooling. For that reason, rcool begins to increase in halos larger

than 1013 M⊙.

The formation of the hot halo not only explains the flattening in the accretion rates

onto galaxies, but also the gas accretion rates onto galaxies that do not have AGN

activity, due to the fact that the rate of gas cooling from the hot halo is larger in the

absence of AGN activity. We compare our semi-analytic model of gas accretion with

the galaxy accretion rates calculated from the simulations in various redshift ranges and

found excellent agreement.

7.2 Future work

The work presented in this thesis opens new questions and motivates further improve-

ment. In the following items we discuss practical applications of the models presented

throughout the thesis, and propose further possible investigations we plan to address in

the near future.

• Modelling of warm dark matter halo accretion histories. In Chapter 2 we analysed

the cosmology dependence of the halo MAH using the analytic model. We varied

the cosmological parameters and showed that in an Einstein-de Sitter universe

the halo MAH is characterized by an exponential function at all redshifts, and

in universes with larger power spectrum index, larger matter density (Ωm,0) or

larger hubble parameter, halos collapse earlier and thus have different accretion

histories. We further tested the cosmology dependence using cosmological simu-

lations (Chapter 3) and concluded that the model is successful in multiple CDM

cosmologies. However, the structure and accretion histories of halos in non-CDM

universes is unclear. Of interest to us are the models with truncated power-spectra,

such as those expected for ‘warm’ dark matter (WDM), due to recent claims of

detection (e.g. Malyshev et al. 2014; Anderson et al. 2015) and recent observations

of dark matter dominated dwarf galaxies of the Local Group (Lovell et al. 2015)

for evidence of dark matter decay (Jeltema & Profumo 2015). By extending the

analytic halo MAH model to include different scenarios of WDM, we will be able

to provide detailed predictions of structure growth for future lensing experiments,

that have the potential to strongly constrain dark matter particle phenomenology

(e.g. Vegetti et al. 2012).

• Analysing the impact of environment on halo concentrations. In Chapter 3 we

showed how the surrounding environment of halos regulates their accretion rates

via assembly bias by using the semi-analytic model for the halo MAH. We found



188 Conclusion

that strongly clustered halos, that reside in preferentially denser environments

and form earlier, have lower accretion rates at z = 0, than late-forming halos of

the same mass. For a better connection between the halo MAH and environment

we plan to derive an additional dependence of the formation time, z−2, on

clustering. Such dependence can be quantified in terms of the relative strength

of the two-point correlation function of young and old halos (see e.g. Gao et al.

2005). By extending the semi-analytic model for the halo MAH we can recalculate

halo concentrations (as done in Chapter 4) in terms of clustering, and potentially

alleviate the longstanding tension between cluster concentrations derived from

simulations and observational measurements (e.g. Umetsu et al. 2015). Part of

this study has already been carried. In a private communication with Umetsu et

al., we compared our model with their data. We assumed formation times that

capture the extreme values within the scatter of the formation time-halo mass

relation, changed the halo mass histories and obtained concentrations in very good

agreement with Umetsu et al. (2015) best-fit relation.

• Investigating the dependence of halo accretion histories on galactic conformity.

Galactic conformity refers to correlations between star formation rates of nearby

galaxies. The physical origin of galactic conformity has been topic of recent debate

(e.g. Hearin et al. 2015; Kauffmann 2015). It has been suggested that it can poten-

tially be driven by the correlation of dark matter halos formation times. But it is

still not clear how star formation changes between galaxies that are within halos of

same mass but different formation times. To analyse the impact of halo assembly

bias on galaxies we plan to apply the semi-analytic model for galaxy gas accretion.

By changing the halo formation times, and so the halo accretion rates from the

semi-analytic MAH model, we will predict how gas accretion onto galaxies changes

due to clustering, and investigate possible scenarios of galactic conformity.

Throughout this thesis we have focussed on large-scale structures, that are mainly

governed by dark matter interacting gravitationally, and moved to small-scale structures,

where the inclusion of gas physics has made numerical simulations an essential tool to this

research. Although our theoretical understanding of the universe is rapidly improving,

both through more refined numerical simulations and observational probes, it is still

lacking on many basic levels. Simulations are unable to reproduce basic observables at

all redshifts, and obervational techniques are not effective enough to be able to trace the

real galaxy growth over time. Improvement in these fields will provide many strict test to

the theories discussed in this thesis. In the mean time, we will continue to work towards

a better understanding of structure formation and galaxy evolution.



A
On the computation of halo

MAH and c − M relations

This appendix presents a step-by-step description on how to compute the halo mass his-

tories following the analytic model derived in Chapter 2, the extended analytic model

derived in Chapter 4 and the semi-analytic model presented in Chapter 3. It also in-

cludes a step-by-step description on how to calculate the concentration-mass relations

derived in Chapter 4. In addition, this appendix provides a short guide on how to

use the COncentration-Mass relation and Mass Accretion Histories (COMMAH) code.

COMMAH is available online in IDL and python, and calculates the c − M relations and

halo MAHs following the extended analytic MAH model and the semi-analytic model for

the c − M relation.
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A.1 Step-by-step guide to compute halo mass histories

A.1.1 Analytic MAH model

This section provides a step-by-step procedure that details how to calculate the halo mass

histories using the analytic model presented in Chapter 2:

1. Calculate the linear power spectrum P (k). In this work we use the approximation

of Eisenstein & Hu (1998).

2. Perform the integral

S(R) =
1

2π2

∫ ∞

0
P (k)Ŵ 2(k; R)k2dk, (A.1)

where Ŵ 2(k; R) is the Fourier transform of a top hat window function and R defines

S in a sphere of mass M = (4π/3)ρm,0R3, where ρm,0 is the mean background

density today.

3. Given M0, the halo mass today, calculate the mass history by first obtaining z̃f

z̃f = −0.0064(log10 M0)2 + 0.0237(log10 M0) + 1.8837 and q = 4.137z̃−0.9476
f .

(A.2)

4. Use the parameter q to calculate f(M0), the function that relates the power spec-

trum to the mass history through the mass variance S,

f(M0) = 1/
√

S(M0/q) − S(M0). (A.3)

5. Finally, the mass history can be calculated as follows,

M(z) = M0(1 + z)af(M0)e−f(M0)z, (A.4)

a =

[

1.686(2/π)1/2 dD

dz
|z=0 + 1

]

, (A.5)

where dD/dz is the derivative of the linear growth factor, which can be computed

by performing the integral D(z) ∝ H(z)
∫∞

z
1+z′

H(z′)3 dz′, where D(z) is normalized to

unity at the present.

The above model is suitable for any adopted cosmology and halo mass range.
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A.1.2 Semi-analytic MAH model

This Appendix provides a step-by-step procedure that outlines how to calculate the halo

mass histories using the numerical model presented in Section 4.4:

1. First assume a cosmology and choose a concentration-mass relation

from the literature. For instance, the Duffy et al. (2008) relation,

c = 6.67(M0/2 × 1012h−1M ⊙)−0.092, is suitable for the WMAP5 cosmology,

whereas Neto et al. (2007) is suitable for WMAP1:

2. Calculate the formation time,

z−2 =

(

200

Acosmo

c(M0)3Y (1)

ΩmY (c(M0))
− ΩΛ

Ωm

)1/3

− 1. (A.6)

Note that the value of Acosmo in the above equation is cosmology dependent.

AWMAP5 = 900 is suitable for the WMAP5 cosmology. In this work we obtained

AWMAP1 = 787, AWMAP3 = 850, AWMAP9 = 820 and APlanck = 798.

3. Calculate the parameters α and β,

α = [ln(Y (1)/Y (c)) − βz−2]/ ln(1 + z−2), (A.7)

β = −3/(1 + z−2). (A.8)

4. Finally, the mass history can be calculated as follows,

M(z) = M0(1 + z)αeβz. (A.9)

The above model is suitable for any cosmology (as long as the concentration-mass

relation and the value of Acosmo correspond to the desire cosmology) and is valid over the

halo mass range for which the concentration-mass and the z−2 − M0 relations, obtained

from simulations, are valid (e.g. 1010 − 1014M ⊙ for Duffy et al. 2008).

A.2 Step-by-step guide to compute c − M relations

A.2.1 Fitting functions for the c − M relation

In this Section we provide fitting functions for the c − M relation in the high-z and low-z

regimes for Planck cosmology. The following expression is suitable for the low-redshift

regime (z ≤ 4) and at all halo masses,
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log10 c = α + β log10(M/ M⊙)[1 + γ(log10 M/ M⊙)2],

α = 1.7543 − 0.2766(1 + z) + 0.02039(1 + z)2,

β = 0.2753 + 0.00351(1 + z) − 0.3038(1 + z)0.0269,

γ = −0.01537 + 0.02102(1 + z)−0.1475.

In the high-redshift regime the c − M relation can be fitted using only two parameters.

The following expression is suitable for z > 4 and at all halo masses,

log10 c = α + β log10(M/ M⊙),

α = 1.3081 − 0.1078(1 + z) + 0.00398(1 + z)2,

β = 0.0223 − 0.0944(1 + z)−0.3907.

A.3 COMMAH code

The concentration-mass relation model presented in this work, as well as the halo mass

accretion history model, are included in the code named COMMAH for COncentration-Mass

relation and Mass Accretion History, available at https://bitbucket.org/astroduff/commah

and http://astro.physics.unimelb.edu.au/ in Research/Public-Data-Releases/COMMAH.

The code is available in both the python and IDL languages. Also, COMMAH is in the PyPi

python package, to install it type ‘pip install commah’. In this section we present a short

overview of COMMAH.

COMMAH is a routine that follows the analytic model described in Section 4.2 to calculate

the MAH of a halo of mass M0 at z = 0 in any given redshift interval (e.g. M(z) between

z = 0 − 10). Also, COMMAH calculates halo concentrations following the semi-analytic

model described in Section 4.3, and outputs the c − M relation at any given redshift. In

addition, it also computes the dark matter accretion rate, the rms of the density field,

peak height, and the integral of the NFW density profile (see eq. 4.21), suitable for DM

annihilation calculations. COMMAH calculates concentration solving eqns. (4.16) and (4.18)

by performing a Levenberg-Marquardt method. As described in the previous section,

commah is suitable for any cosmology.

https://bitbucket.org/astroduff/commah
http://astro.physics.unimelb.edu.au/Research/Public-Data-Releases/COMMAH
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